18+
1 секунда Для мозга Хочу знать Исторические факты Реклама Советы Путешествия Авто
«    Апрель 2018    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
30 


Путешествия

Авто

13-12-2017

Амортиза́тор— устройство, превращающее механическую энергию в тепловую. Служит для гашения колебаний (демпфирования) и поглощения толчков и ударов, действующих на корпус (раму). Амортизаторы применяются совместно с упругими элементами пружинами или рессорами, торсионами, подушками и т. п.
Не следует путать амортизатор и газовую пружину. Последние также часто встречаются в автотехнике и быту, но имеют другое назначение. Справедливости ради надо отметить, что чистых амортизаторов почти не встречается, они всегда подпружинены избыточным давлением газа в бустере. Чистые газовые пружины (без дополнительного сопротивления движению), наоборот, встречаются довольно часто.
По принципу действия — на фрикционные или механические (сухого трения), гидравлические (вязкостного трения) и реласакционные;
по характеру действия сил трения — на амортизаторы одностороннего и двустороннего действия (с сопротивлением на прямом и обратном ходах);
Конструктивно гидравлические амортизаторы делятся на рычажно-лопастные, рычажно-поршневые и телескопические (двух- и однотрубные)с газовым подпором или без него;
Гидравлические амортизаторы[править | править исходный текст]
Гидравлические амортизаторы получили наибольшее распространение. В гидравлических амортизаторах сила сопротивления зависит от скорости перемещения штока. Рабочее тело — масло (оно еще является смазкой). Принцип амортизатора заключается в возвратно-поступательном движении поршня амортизатора, поршень через небольшое отверстие перепускает масло из одной камеры в другую, превращая механическую энергию в тепловую.
Жесткость амортизаторов зависит от начальной настройки перепускных клапанов (для амортизаторов массового предназначения начальную настройку задает производитель на заводе однократно на все время эксплуатации; в амортизаторах спортивного назначения жесткость может регулировать пользователь), изначальной вязкости жидкости (масла) и температуры окружающей среды которая влияет на вязкость амортизаторной жидкости (масла).

Гидравлические амортизаторы делятся на несколько подвидов:
По конструкции:
=рычажные (распространённые до 50-х — 60-х годов)
=двухтрубные (основной тип в настоящее время)
=однотрубные (получают распространение)
По давлению внутри амортизатора:
=без газового подпора (в простонародье их называют просто газовыми или масляными)
=с газовым подпором низкого давления
=с газовым подпором высокого давления

Двухтрубный амортизатор состоит из двух соосных (одна в одной) труб, внешняя из которых является корпусом, внутренняя заполнена рабочей жидкостью и в ней перемещается поршень с клапанами. Пространство между труб заполнено запасом жидкости для охлаждения и компенсации утечек, а также воздухом - для компенсации изменения объёма (температурное расширение жидкости и вход-выход штока).
Достоинства:
=Относительная простота изготовления и ремонта
=Приемлемые рабочие характеристики (в том числе надёжность) для большинства применений в транспорте
=Отсутствие выступающих деталей - может устанавливаться внутри пружины подвески
Недостатки:
=Должен устанавливаться корпусом вниз (штоком вверх), что ухудшает характеристики подвески (увеличение неподрессоренных масс)
=При сильных нагрузках (пересечённые местности, спорт) при работе жидкость сильно греется и может вспениться или смешаться с компенсационным газом, что сильно ухудшит демпфирование, а это опасно).

Однотрубный амортизатор
Представляют из себя трубу, заполненную рабочей жидкостью, в которой перемещается поршень с клапанами. Для компенсации изменения объёма рабочей жидкости (температурные и вход-выход штока) "дно" цилиндра заполнено газом, отделённым от рабочей жидкости плавающим поршнем-перегородкой. Давление газа, как правило, значительно выше атмосферного, для улучшения характеристик рабочей жидкости при нагреве.
Достоинства:
=Данная конструкция является практически самой эффективной
=Такие амортизаторы не боятся наклонов и могут устанавливаться штоком вниз, что улучшает характеристики подвески за счет снижения неподрессоренных масс.
=Его характеристики очень стабильны: за счет того, что компенсационный газ отделен от жидкости плавающим поршнем; за счет высокого давления газа и как следствие жидкости которое значительно отсрочивает момент вспенивания жидкости;
=Стенка рабочего цилиндра имеет непосредственный контакт с воздухом, что улучшает охлаждение жидкости;
=Поршень и цилиндр имеет большой диаметр, а жидкость большой объем - это увеличивает теплоемкость системы.
Недостатки:
=Если компенсационная камера находится прямо в рабочем цилиндре, то данный амортизатор имеет меньший ход по сравнению с двухтрубной конструкцией при одинаковых внешних размерах; =Вынесение компенсационной камеры в отдельный элемент может создавать проблемы размещения амортизатора в подвеске
=Высокое давление в амортизаторе создаёт значительную выталкивающую силу на шток (десятки килограмм), что может требовать замены пружин подвески;
=Данный амортизатор очень критичен к повреждению (вмятинам)на внешней стенке цилиндра, это приведет к заклиниванию поршня и полному выходу из строя в то время как двухтрубный амортизатор даже не заметит вмятины;
=Однотрубник сложней в изготовлении чем двух трубный и как следствие дороже.

Газовый амортизатор
Амортизатор, действующим веществом которого является газ. Возвратно-поступательное движение штока амортизатора затрудняется работой по перепусканию через небольшое отверстие газа из одной камеры в другую. Но по технологии производства и по логике они все являются газомасляными.

Комбинированный амортизатор
(газомасляный или олеопневматический) Амортизатор, действующим веществом которого является как масло, так и газ. Работает масло, газ устраняет образование пены.

Односторонний амортизатор
У амортизатора такого типа сопротивление при ходе, соответствующем сжатию подвески, незначительно, а основное поглощение энергии происходит при отбое. Благодаря этому они обеспечивают несколько более плавный ход, однако с ростом неровностей дороги и скорости подвеска не успевает занять исходное положение до следующего срабатывания. это приводит к "пробоям" и заставляет водителя снизить скорость. С появлением около 1930-го года амортизаторов двойного действия одноходовая конструкция постепенно вышла из употребления

Двусторонний амортизатор
Амортизатор, который действует (работает) в двух направлениях, т.е. амортизатор поглощает энергию при движении штока в обе стороны, передавая, однако, при этом и некоторую часть усилия толчков на кузов при прямом ходе. Такая конструкция амортизатора эффективнее, чем амортизатор односторонний, в том смысле, что может быть построена с учётом необходимого компромисса между плавностью хода и стабильностью автомобиля на дороге. Для скоростных автомобилей характерны более "жёсткие" настройки, для комфортабельных пассажирских - более "мягкие", где бóльшая часть работы амортизатора приходится на "отбой".
На автотранспорте, как правило, эффективность "рабочего хода" амортизатора (сжатие, наезд колесом на препятствие) делают меньше, чем эффективность "отбоя" (обратного движения). В этом случае (при сжатии) амортизатор меньше передаёт толчки от неровностей на кузов, и (при растяжении) "придерживает" колесо от ударов его пружиной о дно выбоин дороги.

КАК ПРАВИЛЬНО ПРОКАЧИВАТЬ!
А. Установите стойку или картридж штоком вверх и плавно, без рывков, сожмите его до определённого момента (рабочая поверхность штока должна не доходить до верхней части стакана стойки на 2-3 см);

Б. Зафиксируйте шток амортизатора в этом положении на 2-3 сек.;

В. Плавно вытягивайте шток до полностью разжатого состояния;

Г. Повторите операции А, Б, В 2-3 раза;

Д. Удерживая амортизатор вертикально, штоком вверх, выполните контрольную операцию (резкими, но короткими движениями штока убедитесь в плавном, без провалов, перемещении поршня). В качественно прокаченных амортизаторах поршень перемещается плавно без провалов (обращаем ваше внимание на то, что в некоторых амортизаторах в полностью разжатом состоянии клапанный механизм может попадать в компенсационную полость, предназначенную для расширения амортизационной жидкости при разогреве, и не оказывать никакого сопротивления).


Нравится(+) 0 Не нравится(-) Google+
Турбированные двигатели!Правильная эксплуатация!
Турбированные двигатели!Правильная эксплуатация!

Турбированные двигатели!Правильная эксплуатация!

Турбированные двигатели обладают большим преимуществом: литровая мощность и крутящий момент у них, как правило, выше. Следовательно, динамические характеристики такого автомобиля значительно лучше, чем у атмосферных аналогов. Турбина двигателя внутреннего сгорания состоит из корпуса и двух колес с лопастями, соединенных между собой валом. Выхлопные газы, выходя из двигателя, раскручивают турбинное колесо, а оно в свою очередь раскручивает компрессорное колесо. Именно компрессорное колесо и создает избыточное давление, которое улучшает наполнение цилиндров топливно-воздушной смесью и, соответственно, увеличивает мощность двигателя. Чудес не бывает, поэтому за увеличение мощности приходится расплачиваться увеличенным расходом топлива.

Правильный подбор масла под определенный тип двигателя позволит увеличить моторесурс двигателя в 2 раза, а правильная эксплуатация автомобиля и его периодическое техническое обслуживание – еще в 2 раза.

Турбины устанавливают как на бензиновые, так и на дизельные двигатели. Некоторые производители используют турбины низкого наддува. Давление, которое создает такая турбина, невысокое, ее основная цель заключается в создании турбулентных потоков воздуха, которые способствуют более качественному смешиванию бензина с топливом. Турбины высокого давления гораздо эффективнее. У моторов с турбиной высокого давления литровая мощность может быть в полтора раза выше, чем у атмосферного аналога. Но ее конструкция немного сложнее. Для того чтобы излишнее давление на высоких оборотах не повредило двигателю, инженеры придумали специальный клапан для устранения избыточного давления. Для многих турбомоторов обязательным атрибутом является интеркулер. Его задача – охлаждать воздух, нагретый турбиной. В холодном воздухе содержится больше кислорода при равном объеме. Современные системы впрыска позволяют практически полностью избавиться от такого явления, как «турбояма» (провал мощности при резком нажатии газа), характерного для двигателей более старой конструкции. В процессе эволюции турбин фактически все недостатки турбомоторов были исключены. Многие как за счет использование двух турбин для низких и высоких оборотов, так и за счет применения турбин с переменной производительностью – такие турбины имеют возможность менять наклон нагнетающих (компрессионных) лопастей. В итоге получили моторы высокой литровой мощности при компактных размерах самих агрегатов.

Но особенности эксплуатации все-таки остались. Периодичность ТО у машин с турбиной, как правило, меньше, чем у атмосферников. Требования к маслу для турбодвигателей более жесткие; это, естественно, сказывается на цене. Турбина – достаточно сложный агрегат, и неправильное пользование ее может дорого обойтись. Первое правило, которое необходимо соблюдать владельцам турбомашин: после пуска двигателя дать ему хотя бы минуту поработать на холостых оборотах. Второе, самое главное: после эксплуатации на высоких оборотах нельзя сразу глушить двигатель. Нужно опять-таки дать силовому агрегату несколько минут поработать на холостых оборотах. Основными причинами неполадок турбин является износ рабочих поверхностей, который при малых значениях о себе может и не давать знать достаточно продолжительное время. Выход турбины из строя обусловлен многими факторами, зависящими как от особенностей конструкции, так и от эксплуатации.

Лопасти турбины под воздействием выхлопных газов вращаются с огромной скоростью – более ста тысяч оборотов в минуту. Ось, которая приводится в движение ведущей крыльчаткой, крепится с помощью подшипников скольжения к корпусу турбины. Для смазки подшипников используется моторное масло, которое подается под давлением. Как только двигатель перестает работать, давление масла резко падает, а обе крыльчатки, ведущая и нагнетающая, продолжают по инерции вращаться. Подшипники вала, на который насажены обе крыльчатки, оказываются без смазки. Вследствие таких перегрузок турбина начинает «кушать» масло. Через увеличившийся зазор смазка просачивается под нагнетающей крыльчаткой и попадает во впускной коллектор, а потом сгорает в цилиндрах. При сильном увеличении зазора турбина начинает выть.

У двух братьев есть по автомобилю. Старший, дождавшись нужного пробега, отвозит авто на СТО, где меняются почти все жидкости, что-то проверяется, подкручивается, подтягивается и чистится. Второй брат, глядя на старшего, решает хотя бы масло поменять. По дороге на СТО отказывают тормоза, поэтому остаток пути авто едет на эвакуаторе. Масло, конечно, поменяли, а заодно заменили и порванные тормозные шланги, и стёртые в ноль тормозные колодки. При встрече старший хвастается: "Машину на СТО свозил, как будто в санаторий". Младший: "Если проводить такую же аналогию, свою я на "Скорой" в травмпункт отвёз!"

Прочитать...
ГУР
ГУР (8 фото)

ГУР
Назначение и устройство

Для чего нужен ГУР? Большинство автолюбителей ответят: "Для того, чтобы легче крутить руль". И будут правы, но отчасти. Кроме повышения комфорта, гидроусилитель позволяет уменьшить передаточное число рулевого управления. Что это дает? Чем больше передаточное число, тем меньшее усилие нужно прилагать для поворота колес. Но количество оборотов руля от упора до упора при этом будет равным 4-5. Уменьшая передаточное число, можно довести количество оборотов руля до 2-3. Управляемость, маневренность и острота реакций автомобиля улучшается, что особенно важно в аварийной ситуации, когда может не хватить времени для вращения руля с перехватами. Кроме того, у гидроусилителя есть еще несколько и преимуществ, и недостатков, о которых будет сказано ниже.

Гидроусилитель может устанавливаться на автомобили с рулевым управлением разных типов: червячным, винт-шариковая гайка. Мы расмотрим самый распространенный вариант - рейку. В состав системы гидроусиления входят:

насос
распределитель
силовой цилиндр
бачок и соединительные шланги

Насос гидроусилителя, как и любой другой насос, предназначен для создания и поддержания необходимого давление в системе и циркуляции рабочей жидкости (специального масла). Конструкция насоса может быть разной. Самые распространенные - лопастные, характеризующиеся высоким к.п.д. и износоустойчивостью. Насос крепится на двигателе и приводится в действие с помощью ремня от коленвала.

Распределитель, в зависимости от положения руля, направляет поток жидкости в соответствующую полость силового цилиндра или обратно в бачок. Он устанавливается на рулевом валу. Основные части распределителя - золотниковый клапан и торсион. Клапан состоит из двух цилиндрических частей с каналами для жидкости: внешней и внутренней. Торсион - это тонкий пружинистый металлический стержень, способный закручиваться под действием крутящего момента. Один конец торсиона соединен с рулевым валом, а второй - с шестерней, входящей в зацепление с рейкой. Внутренняя часть золотникового клапана соединяется с верхней частью торсиона, а внешняя - с его нижней частью.

Силовой цилиндр встроен в рейку. Он состоит из поршня и штока, перемещающего рейку под действием давления жидкости.

Рабочая жидкость передает усилие от насоса через распределитель к силовому цилиндру и смазывает все пары трения. Резервуаром для жидкости служит бачок. В нем может быть расположен фильтр, а в пробке — щуп для измерения уровня. Шланги высокого давления соединяют насос, распределитель и силовой цилиндр, а по шлангам низкого давления жидкость поступает в насос из бачка и возвращается в него из распределителя.

Принцип действия

Как все это работает? Когда руль неподвижен (автомобиль стоит на месте, или движется по прямой), и система гидроусиления не задействована, в распределителе совмещены маслопроводы подачи и стока. Жидкость вхолостую перекачивается насосом через распределитель обратно в бачок. Когда водитель поворачивает руль, тем самым он закручивает торсион, а вместе с ним крутится и внутренняя часть золотникового клапана. Внешняя же часть пока остается неподвижной. Таким образом совмещаются каналы подачи жидкости в соответствующую полость силового цилиндра (в зависимости от того, в какую сторону повернут руль). Из другой полости силового цилиндра жидкость по открывшимся каналам сливается в бачок.Чем на больший угол повернут руль, тем сильнее закручивается торсион. Поэтому большим оказывается и размер перепускного отверстия, а, значит, и усилие, воздействующее на рейку. Рейка, перемещаясь, раскручивает через шестерню нижний конец торсиона, а вместе с ним и внутреннюю часть золотника. Обе части клапана возвращаются в исходное положение, и жидкость вновь перекачивается через распределитель в бачок.

В случае отказа системы гидроусиления потери управления не происходит, поскольку рулевой вал через торсион механически соединен с ведущей шестерней. Согласно нормам безопасности усилие на рулевом колесе легкового автомобиля не должно превышать 15 кг для полностью работоспособной и 30 кг — для неисправной системы рулевого управления. Быстродействие усилителя должно быть таким, чтобы при скорости вращения руля не менее полутора оборотов в секунду его не «закусывало».

Преимущества и недостатки

К перечисленным выше преимуществам ГУРа можно добавить смягчение ударов, передаваемых на руль от неровностей дороги и более четкое удержание автомобиля на выбранной траектории. Каким образом это происходит? Если, наехав на препятствие, колеса стремятся повернуться в сторону, это вызывает смещение рулевой рейки, ведущей шестерни и закручивание нижней части торсиона. Срабатывает золотниковый клапан, но "в обратную сторону", так как усилие пришло не от руля, а от колес. Поэтому система будет не способствовать повороту колес, а противодействовать ему. То же самое происходит и при внезапном проколе шины: ГУР помогает автомобилю сохранять траекторию, а водителю - удержать руль в руках. Таким образом, усилитель повышает безопасность движения, а за счет повышения комфортности вождения снижает утомляемость водителя.
А теперь о недостатках. Во-первых, постоянно работающий насос отбирает часть мощности двигателя, даже когда ГУР не задействован. Причем производительность насоса должна быть такой величины, чтобы обеспечить легкий поворот колес на стоящем автомобиле - когда сопротивление максимально. Но ведь большую часть времени автомобиль движется, и усилий для поворота колес при этом нужно намного меньше! Вот и получается, что значительная часть отобранной у двигателя мощности пропадает впустую.

Во-вторых, производительность насоса зависит от оборотов двигателя - чем они выше, тем большее давление создает насос. А по идее все должно быть как раз наоборот - при малых скоростях движения необходимо максимальное усиление, а при высоких - небольшое. В простом гидроусилителе отсутствует возможность регулирования коэффициента усиления.

Из этого обстоятельства проистекает третий недостаток - противоречие между коэффициентом усиления и информативностью руля. Легкость и комфортность управления на малых скоростях имеет обратную сторону - "пустоту" руля на больших. Машина слишком "остро" реагирует на каждое движение руля, а отсутствие ощущения сопротивления ("обратной связи") при повороте колес не дает возможности водителю правильно оценить их положение. Отчасти решить проблему помогают рейки с переменным передаточным отношением: в центре шаг зубьев небольшой, а к краям увеличивается. В этом случае при малых углах поворота машина не так остро реагирует на действия рулем, что очень важно на больших скоростях, зато на развороте крутить руль приходится меньше. Чем плох этот вариант? А тем, что передаточное отношение зависит от угла поворота руля, а не от скорости движения. Поэтому конструкторы стали искать другие пути.

Электрогидравлический усилитель:

На помощь механике и гидравлике, как всегда, пришла электроника. В результате такого симбиоза появился электрогидравлический усилитель. Впервые его применили на автомобилях "Аudi" под названием "Servotronic". Существует два типа ЭГУРа: с электромагнитным клапаном и с электронасосом. Управляет работой усилителя электронный блок на основании показаний датчиков скорости, поворота руля, оборотов коленвала. Набор датчиков может меняться в зависимости от модели автомобиля.

В первой конструкции в распределитель ГУРа дополнительно встраивается электромагнитный клапан и камера обратного действия с поршнем. При повороте колес на месте или при движении с малой скоростью клапан открыт, давление в системе максимально - руль крутить легко. При наборе скорости клапан, управляемый блоком, пропорционально закрывается. В результате давление в системе уменьшается, а усилие на руле увеличивается. Таким образом, получаем искомое чувство "обратной связи".

Во второй, более с

Система смазки.
Система смазки.

Система смазки.

Система смазки (другое наименование - смазочная система) предназначена для снижения трения между сопряженными деталями двигателя. Кроме выполнения основной функции система смазки обеспечивает охлаждение деталей двигателя, удаление продуктов нагара и износа, защиту деталей двигателя от коррозии.

Система смазки двигателя включает поддон картера двигателя с маслозаборником, масляный насос, масляный фильтр, масляный радиатор, которые соединены между собой магистралями и каналами.

Поддон картера двигателя предназначен для хранения масла. Уровень масла в поддоне контролируется с помощью щупа, а также с помощью датчика уровня и температуры масла.

Масляный насос предназначен для закачивания масла в систему. Масляный насос может приводиться в действие от коленчатого вала двигателя, распределительного вала или дополнительного приводного вала. Наибольшее применение на двигателях нашли масляные насосы шестеренного типа.

Масляный фильтр служит для очистки масла от продуктов износа и нагара. Очистка масла происходит с помощью фильтрующего элемента, который заменяется вместе с заменой масла.

Для охлаждения моторного масла используется масляный радиатор. Охлаждение масла в радиаторе осуществляется потоком жидкости из системы охлаждения.

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

Для поддержания постоянного рабочего давления в системе устанавливается один или несколько редукционных (перепускных) клапанов. Клапаны устанавливаются непосредственно в элементах системы: масляном насосе, масляном фильтре.

Принцип действия системы смазки:

В современных двигателях применяется комбинированная система смазки, в которой часть деталей смазывается под давлением, а другая часть – разбрызгиванием или самотеком.

Смазка двигателя осуществляется циклически. При работе двигателя масляный насос закачивает масло в систему. Под давлением масло подается в масляный фильтр, где очищается от механических примесей. Затем по каналам масло поступает к коренным и шатунным шейкам (подшипникам) коленчатого вала, опорам распределительного вала, верхней опоре шатуна для смазки поршневого пальца.

На рабочую поверхность цилиндра масло подается через отверстия в нижней опоре шатуна или с помощью специальных форсунок.

Остальные части двигателя смазываются разбрызгиванием. Масло, которое вытекает через зазоры в соединениях, разбрызгивается движущимися частями кривошипно-шатунного и газораспределительного механизмов. При этом образуется масляный туман, который оседает на другие детали двигателя и смазывает их.

Под действием сил тяжести масло стекает в поддон и цикл смазки повторяется.

На некоторых спортивных автомобилях применяется система смазки с сухим картером. В данной конструкции масло храниться в специальном масляном баке, куда закачивается из картера двигателя насосом. Картер двигателя всегда остается без масла – «сухой картер». Применение данной конструкции обеспечивает стабильную работу системы смазки во всех режимах, независимо от положения маслозаборника и уровня масла в картере.

Схема системы смазки:

1. масляный поддон
2. датчик уровня и температуры масла
3. масляный насос
4. редукционный клапан
5. масляный радиатор
6. масляный фильтр
7. перепускной клапан
8. обратный клапан
9. датчик давления масла
10. коленчатый вал
11. форсунки
12. распределительный вал выпускных клапанов
13. распределительный вал впускных клапанов
14. вакуумный насос
15. турбонагнетатель
16. стекание масла
17. сетчатый фильтр
18. дроссель

ХОДОВАЯ
ХОДОВАЯ (5 фото)

ХОДОВАЯ

Ходовая часть автомобиля предназначена для перемещения автомобиля по дороге, причем с определенным уровнем комфорта, без тряски и вибраций. Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы действующие на автомобиль.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами, и быстрые колебания с малыми амплитудами. От быстрых колебаний защищает мягкая обивка сидений, резиновые опоры двигателя, коробки передач и так далее. Защитой от медленных колебаний служат упругие элементы подвески, колеса и шины.

Ходовая часть состоит из:

- передней и задней подвески колес,
- колес и шин.

Подвеска колес автомобиля

Подвеска предназначена для смягчения и гашения колебаний передаваемых от неровностей дороги на кузов автомобиля. Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.

Давайте разберемся с тем, как в принципе колеса автомобиля связаны с его кузовом. Даже если вы никогда не ездили на деревенской телеге, то, глядя на нее через экран телевизора, вы можете догадаться о том, что колеса телеги жестко закреплены к ее «кузову» и все проселочные «колдобины» отзываются на седоках. В том же телевизоре (в сельском «боевике») вы могли заметить, что на большой скорости телега рассыпается и происходит это именно из-за ее «жесткости».

Чтобы наши автомобили служили подольше, а «седоки» чувствовали себя получше, колеса не жестко связаны с кузовом. К примеру, если поднять автомобиль в воздух, то колеса (задние вместе, а передние по отдельности) отвиснут и будут «болтаться», подвешенные к кузову на всяких там рычагах и пружинах.

Вот это и есть подвеска колес автомобиля. Конечно, шарнирно закрепленные рычаги и пружины - «железные» и выполнены с определенным запасом прочности, но эта конструкция позволяет колесам перемещаться относительно кузова. А правильнее сказать - кузов имеет возможность перемещаться относительно колес, которые едут по дороге.

Подвеска может быть зависимой и независимой.

Зависимая подвеска это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой. При наезде на неровность дороги одного из колес, второе наклоняется на тот же угол.
Независимая подвеска это когда колеса одной оси автомобиля не связаны жестко друг с другом. При наезде на неровность дороги, одно из колес может менять свое положение, не изменяя при этом положения второго колеса.

При жёстком креплении удар о неровность полностью передаётся кузову, лишь немного смягчаясь шиной, а колебание кузова имеет большую амплитуду и существенное вертикальное ускорение. При введении в подвеску упругого элемента (пружины или рессоры), толчок на кузов значительно смягчается, но вследствие инерции кузова колебательный процесс затягивается во времени, делая управление автомобилем трудным, а движение опасным. Автомобиль с такой подвеской раскачивается во всевозможных направлениях, и высока вероятность «пробоя» при резонансе (когда толчок от дороги совпадает со сжатием подвески в течение затянувшегося колебательного процесса).

В современных подвесках, во избежание вышеперечисленных явлений, наряду с упругим элементом используют демпфирующий элемент – амортизатор. Он контролирует упругость пружины, поглощая большую часть энергии колебаний. При проезде неровности пружина сжимается. Когда же, после сжатия, она начнёт расширяться, стремясь превзойти свою нормальную длину, большую часть энергии зарождающегося колебания поглотит амортизатор. Продолжительность колебаний до возвращения пружины в исходное положение при этом уменьшится до 0,5-1,5 циклов.

Надёжный контакт колеса с дорогой обеспечивается не только шинами, основными упругими и демпфирующими элементами подвески (пружина, амортизатор), но и её дополнительными упругими элементами (буферы сжатия, резинометаллические шарниры), а также тщательным согласованием всех элементов между собой и с кинематикой направляющих элементов.

Таким образом, чтобы автомобиль обеспечивал комфорт и безопасность, между кузовом и дорогой должны быть:

шины

основные упругие элементы

дополнительные упругие элементы

направляющие устройства подвесок

демпфирующие элементы.

Шины первыми в автомобиле воспринимают неровности дороги и, насколько это возможно, в силу их ограниченной упругости, смягчают колебания от профиля дороги. Шины могут служить индикатором исправности подвески: быстрый и неравномерный (пятнами) износ шин свидетельствует о снижении сил сопротивления амортизаторов ниже допустимого предела.

Основные упругие элементы (пружины, рессоры) удерживают кузов автомобиля на одном уровне, обеспечивая упругую связь автомобиля с дорогой. В процессе эксплуатации упругость пружин меняется вследствие старения металла или из-за постоянной перегрузки, что приводит к ухудшению характеристик автомобиля: уменьшается высота дорожного просвета, изменяются углы установки колёс, нарушается симметричность нагрузки на колёса. Пружины, а не амортизаторы удерживают вес автомобиля. Если дорожный просвет уменьшился и автомобиль «просел» без нагрузки, значит, пришло время менять пружины.

Дополнительные упругие элементы (резинометаллические шарниры или буферы сжатия) отвечают за подавление высокочастотных колебаний и вибраций от соприкосновения металлических деталей. Без них срок службы элементов подвески резко сокращается (в частности в амортизаторах: из-за усталостного износа клапанных пружин). Регулярно проверяйте состояние резинометаллических соединений подвески. Поддерживая их работоспособность, Вы увеличите срок службы амортизаторов.

Направляющие устройства (системы рычагов, рессоры или торсионы) обеспечивают кинематику перемещения колеса относительно кузова. Задача этих устройств в том, чтобы сохранять плоскость вращения колеса двигающегося вверх при сжатии подвески и вниз при отбое) в положении близком к вертикальному, т.е. перпендикулярно дорожному полотну. Если геометрия направляющего устройства нарушена, поведение автомобиля резко ухудшается, а износ шин и всех деталей подвески, в том числе и амортизаторов, значительно ускоряется.

Демпфирующий элемент (амортизатор) гасит колебания кузова, вызванные неровностями дороги и инерционными силами, а следовательно, уменьшает их влияние на пассажиров и груз. Он также препятствует колебаниям неподрессоренных масс (мосты, балки, колёса, шины, оси, ступицы, рычаги, колёсные тормозные механизмы) относительно кузова, улучшая тем самым контакт колеса с дорогой.

Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах. На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти «в отрыв» от земли. Вот в отрыв-то ему и не дает возможности уйти стабилизатор, который, прижавшись к земле одним концом, вторым своим концом прижимает и другую сторону автомобиля. А при наезде какого-либо колеса на препятствие, стержень стабилизатора закручивается и стремится побыстрее вернуть это колесо на свое место.

Система питания газовым топливом
Система питания газовым топливом

Система питания газовым топливом

Современный автомобиль может работать на бензине и сжиженном газе

Двигатели газобаллонных автомобилей могут работать на различных природных и промышленных газах, которые могут находиться как в сжатом, так и в сжиженном виде в специальных баллонах.
В основном в качестве такого газа используется метан. В баллонах сжатый газ находится под давлением порядка 20 МПа.

Сжиженный газ - это, как правило, смесь пропана и бутана, находится в жидком состоянии в баллоне при более низком давлении порядка 1,6 – 2 МПа. Сжиженный газ в баллоне не должен занимать весь объем, часть газа должна находиться в газообразном состоянии, чтобы не произошло разрушения баллона при увеличении объема жидкости вследствие нагрева.

По сравнению с жидким нефтяным топливом газ обладает некоторыми преимуществами при использовании его в качестве топлива для ДВС. Во-первых, газ дешевле жидкого топлива. Во-вторых, он лучше смешивается с воздухом, образуя однородную горючую смесь, и обеспечивает более полное сгорание, поэтому в отработавших газах газобаллонных автомобилей содержится меньше вредных веществ. Кроме того, газ в отличие от бензина не разжижает моторное масло, а это гарантирует уменьшение износа деталей двигателя.

Антидетонационная стойкость газа выше, чем бензина. В то же время смесь газа с воздухом имеет меньшую теплоту сгорания и стандартный двигатель при работе на газе будет иметь меньшую мощность, чем тот же двигатель при работе на жидком топливе. Несмотря на некоторые недостатки, газобаллонные автомобили получают все большее распространение в мире.

Перед тем, как подать газ в камеру сгорания, нужно снизить его давление, для чего используют специальные редукторы. Сжиженный газ предварительно переводится в газообразное состояние с помощью испарителя – специального теплообменника, подключенного к системе охлаждения двигателя.

Емкость для газа специальной формы

Все больше известных производителей автомобилей серийно выпускают модели, предназначенные для эксплуатации на двух видах топлива — жидком и газообразном. На этих автомобилях параллельно устанавливаются две системы питания — для жидкого топлива и для газа. Водитель может с помощью контрольного устройства переключать работу двигателя на тот или другой вид топлива и определять остаток любого топлива с помощью контрольных приборов.

Необходимо размещать газовые баллоны в безопасном месте, чтобы они не были повреждены в случае аварии. Иногда баллоны устанавливают в багажном отделении легковых автомобилей, но располагают их при этом как можно дальше от задней части автомобиля, которая может подвергнуться удару при аварии. На грузовых автомобилях баллоны для сжатого газа обычно размещают между рамой и грузовой платформой. У автобусов баллоны могут располагаться на крыше. Некоторые производители изготавливают емкости для газового топлива из композитных материалов специальной формы для лучшего использования объема багажника.

ПРИЧИНЫ, ПО КОТОРЫМ ВЫХОДЯТ ИЗ СТРОЯ АМОРТИЗАТОРЫ.
ПРИЧИНЫ, ПО КОТОРЫМ ВЫХОДЯТ ИЗ СТРОЯ АМОРТИЗАТОРЫ.

ПРИЧИНЫ, ПО КОТОРЫМ ВЫХОДЯТ ИЗ СТРОЯ АМОРТИЗАТОРЫ.

Названы причины, по которым выходят из строя амортизаторы. В самом амортизаторе сломаться могут только две вещи – выйти из строя клапаны и нарушиться герметичность сальника штока. Если поломка первого рода встречается достаточно редко, то вторая является основной и имеет множество причин для происхождения.
Надежно работающий сальник амортизатора представляет собой достаточно нетривиальную конструкторскую задачу. Действительно, его шток проходит через масляную ванну изнутри наружу, повторяя это циклическое движение сотни тысяч раз, часто со значительными ускорениями, нагреваясь (и расширяясь), вместе с нагревающимся при работе маслом. Еще сложнее ситуация у однотрубных систем, ведь там все усугубляет давление газа, которое равномерно распространяется и на масло, по определению стараясь вытолкнуть его наружу.
После решения конструкторской задачи на первое место выходит качество изготовления и качество материалов. Не менее важны и показатели стабильности производства и тех допусков, посадок и отклонений, которые закладываются в каждый амортизатор. Все это и входит в определение такого емкого слова, как «культура производства». Именно поэтому одни амортизаторы служат дольше, чем автомобиль, а другие нужно проверять каждые 20 тысяч километров. Но и в цене разница может доходить до 10 раз.
Во время работы на автомобиле шток амортизатора «собирает» взвешенную в воздухе пыль и иные механически (абразивно) и химически агрессивные вещества типа соляного раствора, которым поливают зимой наши дороги. Они просачиваются в небольших количествах даже через исправный защитный кожух (пыльник). Другое дело, когда этот кожух поврежден или даже частично разрушен. Пыль и грязь, попадая на шток, как наждаком срезают поверхность сальника, и масло начинает просачиваться наружу. Полированная поверхность штока рассчитана на многолетнюю эксплуатацию. Появляющаяся на ней ржавчина свидетельствует либо о сверхагрессивной среде, либо о проблемах с подбором материала и соблюдением качества производства его изготовителем.
Раковинки ржавчины вызывают интенсивный износ сальника, но самое обидное, когда шток поврежден еще при установке горе-мастером, использовавшим в работе пассатижи, струбцины или иные металлические захваты. Царапины на полированной поверхности очень скоро приведут к разрушению сальника.
Для избежания же неравномерного износа поверхности штока затягивать амортизатор до упора нужно только когда автомобиль стоит на колесах с нормальной нагрузкой. Простая регулярная проверка целости и сохранности пыльника и правильная первоначальная установка амортизатора смогут значительно продлить его жизнь.
Труднее избежать неблагоприятных режимов работы, изнашивающих внутренние клапаны. К таким относятся предельно высокие и низкие температуры и длительная езда на невысокой скорости с большими амплитудами перемещения штока. Зиму, лето и дачные участки с «бетонками» не отменишь, но вот буфер отбоя нужно также проверять регулярно. Он размягчается от попадающего на него масла, и при его разрушении подвеску может «пробить».

Как правильно проезжать "лежачего" полицейского.
Как правильно проезжать "лежачего" полицейского.

Как правильно проезжать "лежачего" полицейского.

Для тех водителей, которые не обращают внимания на дорожные знаки, пешеходные переходы и не соблюдают скоростной режим, придумали ИДН - искусственные дорожные неровности. А попросту - «лежачих полицейских».

Их в последнее время на дорогах стало много, особенно в жилых зонах и у нерегулируемых пешеходных переходов улиц. Волей-неволей приходится тормозить. Но не все умеют проезжать эти неровности правильно.

Когда мы нажимаем на педаль тормоза движущегося автомобиля, то тормозные силы возникают в месте контактов колёс с дорогой. Они направлены назад, как показано на рисунке. Но сразу остановиться автомобилю не даёт сила инерции, которая тянет автомобиль вперёд. Эта сила приложена к центру масс, который находится значительно выше поверхности дороги.

Две силы, действующие в противоположных направлениях и приложенные к разным местам, называются в физике моментом сил. Этот момент пытается прижать переднюю часть автомобиля к земле, а заднюю приподнять. Пружины передней подвески при этом сжимаются, нагрузка на рычаги и подшипники возрастают. И тем сильнее, чем активнее торможение.

И если мы во время торможения наезжаем на «лежачего полицейского», то передняя подвеска получает ещё и удар снизу. В дополнение к нагрузке сверху.

Один такой двойной удар подвеска выдержит. И десять, наверное, выдержит. Но если так ездить регулярно, то машина долго не протянет.

Поэтому тормозить перед неровностью нужно заранее. А за метр-два педаль тормоза отпустить. Тогда нос автомобиля успеет приподняться, и удар будет только снизу, который воспримут мягкие несжатые пружины. Если вы заметили препятствие поздно и не успели понизить скорость, всё равно нужно отпустить тормоза - удар будет сильный, но только с одной стороны.

Итак, проезжать дорожные неровности, искусственные и естественные, лучше при равномерной невысокой скорости. Её величину каждый может определить экспериментально - проезжаем так, чтобы в машине ничего не гремело.

Когда-то одним из элементов спортивного автомобильного многоборья был проезд через деревянные пеньки, по высоте равные дорожному просвету автомобиля. Мы, подъезжая к ним, прибавляли газу, приподнимая нос автомобиля. А над ними притормаживали, поднимая хвост. Можно так перепрыгнуть и через ИДН, но нужно тренироваться.

Встречаются рекомендации проезжать «лежачих полицейских» под некоторым углом к ним. Тогда колёса по очереди переезжают препятствие, и нагрузка на подвеску уменьшается. Но при современном многорядном движении это не всегда возможно. Приходится просто снижать скорость.

А вот самая большая ошибка, которую я регулярно наблюдаю как у начинающих, так и водителей со стажем. Они бывают так поглощены процессом переезда через «лежачего полицейского», что не замечают пешеходов на переходе, выделенном этими самыми полицейскими.

Препятствие ведь укладывают не для того, чтобы позлить водителей, а чтобы оградить этот пешеходный переход.

Берегите подвеску своего автомобиля, а заодно и пешеходов, переходящих дорогу. Они, согласно Правилам, - полноправные участники дорожного движения.

Оптимальным считается проезд лежачего полицейского, когда вы слега притормаживаете и перед самим полицейским отпускаете тормоза, тем самым проскакиваете его с наименьшей нагрузкой для передней подвески. Либо двигаясь равномерно перед самим лежачим полицейским слегка нажать на газ, после чего сила тяжести тоже уйдет на зданию ось.

Перед преодолением препятствия задней оси автомобиля надо слегка нажать на тормоз, тем самым разгрузив заднюю подвеску. Вот вроде и все. А как вы проезжаете лежачих полицейских?Если не заметил вовремя "асфальтового", то если еще не доехал и есть возможность тормозить "ДО" то тормозим.. если нет и скорость большая то после проезда сразу же давим газ в пол - это позволит стабилизировать авто и уменьшить время раскачки. Опробовано на АКП до 70 км/ч.

А можно и так притормаживай до самого полицейского, в момент касания переноси ногу на педаль газа, когда передняя ось только начинает скатываться с полицейского увеличивай давление на педаль газа. После того как раскачивание прекратилось газ можно убирать.
Можно переезжать и по диагонали.

Делается это для того, чтобы машина не так подпрыгивала. Тот же самый эффект достигается, если проезжать лежачего полицейского под углом, чтобы сначала его переезжало одно колесо, а потом другое.

Когда подвеску поднимает сразу с двух сторон, поднимается и вся машина, а когда только с одной, то работает только один амортизатор, а поскольку масса автомобиля та же самая, что и при проезде обоими колёсами одновременно, то машина только немного наклоняется.

Кроме того, при съезде с лежачего полицейского по диагонали машина меньше раскачивается и меньше шанс зацепить юбкой бампера/защитой картера за землю, поскольку машина не "падает" обоими колёсами сразу, а постепенно опускается на один (уже опустившийся) амортизатор. Это весьма актуально для тех, у кого низкая посадка и длинные свесы.

Датчики на наших авто, назначение и принцип работы
Датчики на наших авто, назначение и принцип работы (8 фото)

Датчики на наших авто, назначение и принцип работы

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ).

Назначение датчика. Принцип действия.

Датчик массового расхода воздуха предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока.
Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0,1 секунды.
Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной.
Если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом величина тока нагрева нити пропорциональна расходу воздуха.
Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока.
С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика.
Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900—1000°C импульсом тока в течение 1 секунды. Формирует импульс управления прожигом блок управления.

Для промывки никак нельзя использовать кетоны и эфиры. По трём причинам:
1. Растворяют компаунд.
2. При высыхании очень сильно охлаждают кристалл. Он может "лопнуть\треснуть".
3. Растворяют "маску" на кристалле (это отн. не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата, на которой тоже маска и металл. напыление) Если маска смоется, плёнка деформируется и оторвётся.

Не надо:
- лазить туда спичками\зубочистками и т.д.;
- промывать всякими разъедателями типа Виннса и Карбоклина.

В общем, что остаётся?
WD-40. Там соляра и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой (20% воды), или этил / бутил / пропил – ацетатами (Ч.Д.А.). Они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт). Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить "родным" вентилятором, включив его с компа. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован. Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (ДПДЗ)

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали "газа". Основной враг датчика положения дроссельной заслонки - мойщики двигателей.
Срок службы датчика положения дроссельной заслонки совершенно непредсказуем. Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

ДАТЧИК ДЕТОНАЦИИ

Датчик детонации установлен на блоке двигателя между 2-м и 3-им цилиндрами. Существуют два типа датчика детонации – резонансный (бочонок) и широкополосный (таблетка). Датчик детонации разных типов не взаимозаменяемы.
Датчик детонации - это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации - как у пьезо-зажигалки. Чем сильнее удар, тем больше напряжение.
Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация - более позднее зажигание. Отказ или обрыв датчика детонации проявляются в "тупости" мотора и повышенному расходу топлива.
Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает ЭДС при воздействии на него колебаний звуковой частоты через корпус датчика.
Эти колебания с помощью пьезоэлемента преобразуются в аудиосигнал. Таким образом, с помощью ДД блок EFI "слышит", что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок).
Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют "смолой") не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно-частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000Гц с центральной частотой в районе 2700Гц (примерная частота детонации).
Если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (УОЗ) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются.
Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детационными процессами в ДВС (при этом характерным так называемым "звоном пальцев"), худшей тягой, повышенным расходом топлива.

ДАТЧИК ДАВЛЕНИЯ МАСЛА

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ (ДОЖ)

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта. Основное функциональное назначение датчика температуры охлаждающей жидкости - чем холоднее мотор, тем богаче топливная смесь.
Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор (резистор), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 гр. - 177 Ом, 25 гр. - 2796 Ом, 0 гр. - 9420 Ом, - 20 гр. - 28680 Ом. Температура охлаждающей жидкости влияет почти на все характеристики управления двигателем. Датчик температуры охлаждающей жидкости весьма надежен.
Основные неисправности - нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов.
Отказ датчика температуры охлаждающей жидкости - включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

ДАТЧИК КИСЛОРОДА

Датчик кислорода (лямбда зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор.
Задача датчика кислорода- определение наличия остатков кислорода в отработавших газах.
Есть кислород - бедная топливная смесь, нет кислорода - богатая.
Показания датчика кислорода используются для корректировки подачи топлива.
Категорически запрещается использование этилированного бензина.
Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ)

Датчик положения коленвала предназначен для фо

•Топливный насос.
•Топливный насос. (5 фото)

•Топливный насос.
Топливный насос – основной конструктивный элемент топливной системы бензинового двигателя, обеспечивающий подачу под давлением определенного количества топлива к форсункам (двигатели с впрыском топлива) или карбюратору (карбюраторные двигатели). В зависимости от типа привода различают механические и электрические топливные насосы.
Механический топливный насос

Механический топливный насос (бензонасос) применяется на карбюраторных двигателях. Он имеет механический привод от распределительного вала (вала привода масляного насоса). Насос располагается непосредственно на двигателе.

Механический топливный насос является разновидностью поршневого насоса. Конструктивно он объединяет корпус, состоящий из двух частей и закрытый сверху крышкой; диафрагму, установленную между верхней и нижней частью корпуса; шток, жестко соединенный с диафрагмой; возвратную пружину, насаженную на шток; всасывающий и нагнетательный клапаны в верхней части насоса; сетчатый фильтр в крышке насоса и механический привод.
Диафрагма является основным рабочим органом насоса. Она состоит из нескольких (2-3) мембран, между которыми расположены прокладки. Диафрагма соединена со штоком, который другим концом взаимодействует с элементами механического привода насоса. Различают разные схемы механического привода насоса. На отечественным автомобилях применяется конструкция, состоящая из толкателя и рычага с балансиром. У зарубежных производителей популярна схема с двуплечим рычагом (коромыслом).

Привод насоса осуществляется от эксцентрика распределительного вала. При вращении эксцентрика привод насоса перемещает шток с диафрагмой вниз, преодолевая усилие пружины. Объем полости над диафрагмой увеличивается, топливо за счет возникающего разряжения поступает в насос через всасывающий клапан из топливного бака. Нагнетательный клапан закрыт.

При дальнейшем движении эксцентрика рычаг привода насоса освобождается, а диафрагма перемещается вверх под действием возвратной пружины. Над диафрагмой создается давление, за счет которого открывается нагнетательный клапан, и топливо через нагнетательный патрубок поступает в карбюратор. Всасывающий клапан закрыт. Цикл работы насоса повторяется при каждом обороте эксцентрика.

Когда поплавковая камера карбюратора заполняется, запорная игла отсекает доступ топлива в карбюратор. Диафрагма при этом остается в нижнем положении, а привод насоса работает вхолостую (ничего не перемещает). Производительность механического топливного насоса регулируется автоматически путем изменения амплитуды движения диафрагмы.
Электрический топливный насос

Электрический топливный насос применяется в топливной системе бензиновых двигателей с распределенным впрыском топлива. В двигателях с непосредственным впрыском топлива, а также дизельных двигателях электрический насос используется в контуре низкого давления для предварительной подачи топлива к насосу высокого давления. Электрический топливный насос создает давление топлива в пределе 0,3-0,4 Мпа (в двигателях с непосредственным впрыском – до 0,7 Мпа). Использование механических насосов в системах впрыска топлива невозможно по причине низкого давления подачи топлива.

Топливный насос с электрическим приводом может располагаться в топливопроводе или в топливном баке. На большинстве современных автомобилей топливный насос встроен в топливный бак. Такая схема обеспечивает лучшее охлаждение насоса, сокращает вероятность потерь за счет отсутствия всасывающей магистрали. С другой стороны, система имеет максимальную длину нагнетательного топливопровода, что повышает его уязвимость.
Электрический топливный насос состоит из электрического привода (электродвигатель) и насосной части (собственно насос), помещенных в металлический корпус. Все элементы топливного насоса находятся в контакте с топливом. Бензин имеет высокое электрическое сопротивление (более 1 МОм), предотвращающее короткое замыкание. Конструктивно топливный насос представляет собой модуль, в который помимо насоса включаются датчик расхода топлива, сетчатый топливный фильтр, топливозаборник.

Работу топливного насоса обеспечивают два клапана – обратный и редукционный. Обратный клапан запирает топливную систему при остановке двигателя. Редукционный клапан поддерживает определенное давление в системе, перепуская часть топлива обратно на впуск.

По конструкции различают следующие виды электрических топливных насосов: роликовый, шестеренный и центробежный.
В роликовом насосе топливо всасывается и нагнетается за счет вращения ротора и перемещения в нем роликов. При увеличении пространства между роликом и ротором создается разряжение, и топливо заполняет это пространство. Когда пространство заполнится полностью, подача топлива отсекается. По мере вращения ротора происходит уменьшение пространства, открывается выпускное отверстие и топливо под давлением покидает насос.
Аналогичным образом происходит работа шестеренного насоса, где топливо всасывается и нагнетается посредством движения внутренней шестерни (ротора) относительно эксцентрично расположенной внешней шестерни (статора). Боковые стороны зуба ротора при вращении образуют в своих промежутках меняющиеся камеры, с помощью которых всасывается и нагнетается топливо.

В силу особенностей конструкции роликовый и шестеренный насосы устанавливаются в топливопроводе. В современных системах впрыска предпочтение отдается центробежным (лопастным) насосам, которые обеспечивают равномерную (без пульсаций) подачу топлива и производят мало шума. Вместе с тем, центробежные насосы имеют ограничения по создаваемому давлению и производительности.
Центробежный топливный насос устанавливается, как правило, в топливном баке. Рабочее колесо (крыльчатка) центробежного насоса снабжено по периметру многочисленными лопатками. Крыльчатка вращается внутри камеры, в которой находятся два канала определенной формы – всасывающий и нагнетательный. Завихрения топлива, возникающие при воздействии на него лопаток, обеспечивают повышение давления.

Работа топливного насоса начинается по сигналу блока управления двигателем, при котором происходит активация реле насоса. Для обеспечения запуска двигателя электрический топливный насос начинает работу сразу с включением зажигания. На некоторых автомобилях включение насоса происходит при открытии водительской двери, т.е. еще до запуска двигателя в топливной системе создается рабочее давление. Электрический топливный насос поддерживает давление топлива в узких пределах. Давление регулируется путем изменения напряжения или с помощью предохранительного клапана.

111: (...) Психика человеческая и не такие чудеса творит, только изучена еще пока слабо, ибо голова предмет темный.

222: (...) А физиологические механизмы, конечно, "глупо" изучать, ведь пот и кровь - это противно и неинтересно в сравнении с вечным сиянием чистого разума.

333: (...) нестинарство изучается с 19 века. Можно, конечно, было бы и погуглить, но зачем, не так ли?

222: Спасибо, 333, теперь я знаю правильную фразу про потожировой слой, влияние которого с пеной у уст отрицает 111. "Эффект Лейденфроста — это явление, при котором жидкость в контакте с телом значительно более горячим, чем точка кипения этой жидкости, создаёт изолирующий слой пара, который предохраняет жидкость от быстрого выкипания". Физика, физиология и никакой эзотерики. Что мне, автору исходного текста, лично совавшему руку в огонь много раз, и требовалось доказать.

Прочитать...
Броуновское движение
Броуновское движение

Броуновское движение

Броуновское движение — беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение — наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.

При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времен). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом А в вязкой жидкости. Соотношения для А и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная NА. Кроме поступательного броуновского движения, существует также вращательное броуновское движение — беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное броуновское движение.

Типы двигателей
Типы двигателей (9 фото)

Типы двигателей
(«Fact»)

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.

Типы двигателей

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

• впуск воздуха или его смеси с топливом;
• сжатие рабочей смеси,
• рабочий ход при сгорании рабочей смеси;
• выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

• Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

• в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
• во впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
• двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми, эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — "тяговиты на низах").

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

• большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
• большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
• меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е). Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Конструктивные параметры двигателей

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

Показатели двигателей

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:
- рабочего объема. Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
- давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. О

Разрезная шестерня распредвала. Для чего нужна и методика настройки.
Разрезная шестерня распредвала. Для чего нужна и методика настройки.

Разрезная шестерня распредвала. Для чего нужна и методика настройки.

Вопрос о том, когда мотор работает лучше - при фазах, сдвинутых вперед или назад, не правомерен. Именно соблюдение эффективных фаз газораспределения (ФГР) обеспечивает оптимальные характеристики силового агрегата. Разрезная шестерня распредвала дает возможность не ослабляя натяжения ремня ГРМ, изменить положение распредвала относительно коленвала. Причем шаг настройки калибруется на десятые доли градуса.

Мощность и крутящий момент двигателя определяются его механической частью: рабочим объемом; проходными сечениями каналов и длиной систем впуска и выпуска; ФГР - периодами открытого и закрытого состояния клапанов, выраженные в градусах поворота коленвала относительно верхней и нижней мертвых точек (ВМТ и НМТ). ФГР обычно изображают в виде круговых диаграмм.Рассмотрим фазы газораспределения двигателя ВАЗ 21083 объемом 1500 см3 со стандартным распредвалом и зазорами 0,2±0,05 мм впускных и 0,35±0,05 мм выпускных клапанов. Хотя все нижеизложенное имеет большое практическое значение для любого 4-ех тактного двигателя внутреннего сгорания.Как видим моменты открытия-закрытия клапанов несколько раньше прихода поршня в ВМТ (на 33°), а закрывается значительно позже, чем поршень пройдет НМТ (на угол 80°). Во впускном канале, перед клапаном, скорость потока топливовоздушной смеси переменная - от нуля при закрытом клапане до 100 м/c при открытом. Поэтому при завершении такта впуска, впускной клапан закрывается после достижения поршнем НМТ, когда он уже идет вверх, сжимая горючую смесь, при этом на высоких оборотах возникает эффект газодинамического наддува - инерционный подпор потока свежей смеси способствует уплотнению "заряда", улучшая наполнение цилиндра свежей рабочей смесью. Следовательно угол запаздывания закрытия после НМТ впускного клапана (угол газодинамического наддува 80°) - один из основных параметров распредвала.Не менее важный параметр - угол перекрытия клапанов (П=33°+17°=50°). Впускной клапан начинает открываться до достижения поршнем ВМТ, пока еще идет такт выпуска и поршень движется вверх, вытесняя из камеры сгорания отработавшие газы. При этом наступает перекрытие клапанов, когда впускной и выпускной клапан одновременно открыты и разрежение, которое создается в выпускном коллекторе "подхватывает" свежую смесь в цилиндр, улучшая его наполнение. Причем, возникающий при этом эффект "продувки" цилиндров, выражен тем сильнее, чем больше обороты двигателя.

Монтаж разрезанной шестерни рекомендуется по 2 причинам:

1. При крупносерийном производстве двигателей отклонения размеров деталей от заданных чертежей неизбежны. За счет отклонения размеров деталей механизма газораспределения и кривошипно-шатунного механизма, фактические ФГР двигателя одной модели могут отличаться от номинальных до ±10° по коленвалу, что составляет погрешность в пределах одного зуба на распред. шестерне. Для компенсации такой погрешности практикуется установка разрезанной шестерни, позволяющей изменить положение ее зубчатого венца относительно ступицы с шагом 0°, в отличии от заводской сплошной шестерни, которая фиксируется только в одном положении и отойти от него можно лишь на зуб вперед или назад с шагом 17° по коленвалу. Как следствие - заметная потеря в мощности и моменте вместо предполагаемой прибавки.

2. применение тюнинговых и спортивных распредвалов с увеличенным подъемом кулачков и измененным профилем. Установка такого вала со стандартной шестерней дает прибавку по мощности и моменту. Настройка такого на эффективные ФГР при помощи разрезанной шестерни добавляет еще 3% по мощности.

Что такое койловер, винтовая подвеска?
Что такое койловер, винтовая подвеска?

Что такое койловер, винтовая подвеска?

Пружины создают в форме витков, что позволяет им сжиматься и разжиматься. Койловеры(винтовая подвеска) позволяют сжимать пружину относительно амортизатора. Амортизатор может быть выполнен с регулировкой жесткости.

Какие бывают койловеры, винтовая подвеска?
Есть два основных вида койловеров. Один из них позволяет оставить вашу старую стойку поставив на неё винтовую резьбу и пружину с измененными характеристиками. Проблема этого способа заключается в том, что изменяя клиренс вашего автомобиля амортизатор не справляется с работой подвески(что приводит к ухудшению управляемости). Второй вид меняет вашу стойку целиком. В этом случае резьба нанесена непосредственно на корпус стойки, этот способ является более предпочтительным для занижения вашего автомобиля. Одним из преимуществ этого способа являетя возможность регулировки клиренса непосредственно на автомобиле, не разбирая подвеску.

Как низко койловеры или винтовая подвеска могут занизить ваш автомобиль?
Все зависит от марки койловеров и от конкретного автомобиля. Большинство койловеров имеют занижение около 20 мм в самом высоком положении. Диапазон настроек занижения возможен от 20мм до 100мм, хотя большинство автовладельцев занижают свой автомобиль в районе 30-50мм. Некоторые люди готовят свои автомобили для шоу и выставок, опуская свои автомобили очень низко(на сколько это возможно). Так в большинстве случаев койловеры позволяют занизить ваш автомобиль больше чем это необходимо. Есть и такая винтовая подвеска, которая позволяет увеличить клиренс вашего автомобиля или джипа, но это тема уже для другого ресурса. Мы поможем вам занизить почти любой автомобиль.
Полный комплект: Когда люди хотят купить койловеры, как правило они имеют в виду полный комплект с амортизаторами. Это самый дорогой и полный комплект. В зависимости от производителя и автомобиля они также поставляются с опорными подшипниками или просто с верхними креплениями. Это значит, что вам не придется использовать свои старые запчасти при установке койловеров. Так же они идут с новыми отбойниками специально предназначенными для занижения автомобиля. Есть и не полные комплекты, специально для дрэг-рейсеров выпускают отдельно передние койловеры. А так же есть отдельно пружины с винтовой резьбой без стойки(я описывал их выше).

Койловеры (винты) используются как в автомобилях так и в мотоциклах. Винтовая подвеска(койловеры) позволяют отрегулировать дорожный просвет автомбиля на нужную высоту с помощью резьбы на стойке. Койловеры используются в мотоциклах в течении нескольких десятилетий, так же винтовую подвеску уже давно используют в автоспорте. С 90-х годов койловеры используются не только в спортивных, но и в обычных дорожных автомобилях. Винты(coilovers) позволяют максимально занизить транспортное средство. Занижение можно при желании регулировать почти в любом месте на дороге. Поскольку настройку можно выполнить на каждой оси отдельно, можно использовать шины разного размера. Кроме того, выставочный автомобиль можно сделать чрезвычайно низким для шоу. У некоторых койловеров есть настройка жесткости. Благодаря высокой жесткости автомобиль может двигаться гораздо быстрее в поворотах. Амортизаторы в койловерах идут с другими настройками, которые не доступны в стандартных амортизаторах.

На таможне порадовала девочка:
- что в коробке?
- амортизатор
- откройте
*я открываю*
- что это?
- амортизатор
- зачем?
- для машины
- ладно, езжайте

Прочитать...

Из обсуждения "умной" чашки на хабре, которая умеет определять тип налитой жидкости.

- А если борщ залить? Или там, взять печенюшку и размочить в молоке?
- О, тестировщики подтянулись)

Прочитать...
Как сделать танцующую жидкость.
Как сделать танцующую жидкость.

Как сделать танцующую жидкость.

Такая нетривиальная субстанция, как неньютоновская жидкость (структура которой меняется в зависимости от силы сопротивления) может стать отличным развлечением.

Приготовьте простейший вариант этой жидкости - смесь кукурузного (или обычного) крахмала и воды в соотношении 2:1.

Хорошо перемешайте и начинайте развлекаться: если вы медленно опустите в нее пальцы, она будет жидкой, стекающей с рук, а если со всей силы ударите по ней кулаком, то поверхность жидкости превратится в упругую массу.

Теперь эту массу можно вылить на противень, поставить противень на сабвуфер или колонку и громко включить динамичную музыку (или какой-нибудь вибрирующий шум).

От разнообразия звуковых волн масса будет вести себя по-разному - где-то уплотняясь, где-то нет, отчего и образуется живой танцующий эффект.

Добавьте несколько капель пищевого красителя и вы увидите, как своеобразно окрасятся танцующие "червячки".

Автоматическая КПП
Автоматическая КПП (6 фото)

Автоматическая КПП

Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя.
Но даже самые совершенные гидромеханические коробки не лишены недостатков. К ним относятся: сложность конструкции, высокая цена и стоимость обслуживания, более низкий КПД, худшая динамика и повышенный расход топлива по сравнению с механической КПП, медлительность переключений.

Устройство и принцип работы

Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.
Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта - устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, - с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.
Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе. Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.
Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.

Режимы работы гидротрансформатора

Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.
Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.
Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.
При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.

Как работает планетарная передача

Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.
В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.
Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.
Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.
Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.
Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции - вот ее неоспоримые достоинства.
Планетарный ряд Рави

ХОДОВАЯ
ХОДОВАЯ (5 фото)

ХОДОВАЯ

Ходовая часть автомобиля предназначена для перемещения автомобиля по дороге, причем с определенным уровнем комфорта, без тряски и вибраций. Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы действующие на автомобиль.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами, и быстрые колебания с малыми амплитудами. От быстрых колебаний защищает мягкая обивка сидений, резиновые опоры двигателя, коробки передач и так далее. Защитой от медленных колебаний служат упругие элементы подвески, колеса и шины.

Ходовая часть состоит из:

- передней и задней подвески колес,
- колес и шин.

Подвеска колес автомобиля

Подвеска предназначена для смягчения и гашения колебаний передаваемых от неровностей дороги на кузов автомобиля. Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.

Давайте разберемся с тем, как в принципе колеса автомобиля связаны с его кузовом. Даже если вы никогда не ездили на деревенской телеге, то, глядя на нее через экран телевизора, вы можете догадаться о том, что колеса телеги жестко закреплены к ее «кузову» и все проселочные «колдобины» отзываются на седоках. В том же телевизоре (в сельском «боевике») вы могли заметить, что на большой скорости телега рассыпается и происходит это именно из-за ее «жесткости».

Чтобы наши автомобили служили подольше, а «седоки» чувствовали себя получше, колеса не жестко связаны с кузовом. К примеру, если поднять автомобиль в воздух, то колеса (задние вместе, а передние по отдельности) отвиснут и будут «болтаться», подвешенные к кузову на всяких там рычагах и пружинах.

Вот это и есть подвеска колес автомобиля. Конечно, шарнирно закрепленные рычаги и пружины - «железные» и выполнены с определенным запасом прочности, но эта конструкция позволяет колесам перемещаться относительно кузова. А правильнее сказать - кузов имеет возможность перемещаться относительно колес, которые едут по дороге.

Подвеска может быть зависимой и независимой.

Зависимая подвеска это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой. При наезде на неровность дороги одного из колес, второе наклоняется на тот же угол.
Независимая подвеска это когда колеса одной оси автомобиля не связаны жестко друг с другом. При наезде на неровность дороги, одно из колес может менять свое положение, не изменяя при этом положения второго колеса.

При жёстком креплении удар о неровность полностью передаётся кузову, лишь немного смягчаясь шиной, а колебание кузова имеет большую амплитуду и существенное вертикальное ускорение. При введении в подвеску упругого элемента (пружины или рессоры), толчок на кузов значительно смягчается, но вследствие инерции кузова колебательный процесс затягивается во времени, делая управление автомобилем трудным, а движение опасным. Автомобиль с такой подвеской раскачивается во всевозможных направлениях, и высока вероятность «пробоя» при резонансе (когда толчок от дороги совпадает со сжатием подвески в течение затянувшегося колебательного процесса).

В современных подвесках, во избежание вышеперечисленных явлений, наряду с упругим элементом используют демпфирующий элемент – амортизатор. Он контролирует упругость пружины, поглощая большую часть энергии колебаний. При проезде неровности пружина сжимается. Когда же, после сжатия, она начнёт расширяться, стремясь превзойти свою нормальную длину, большую часть энергии зарождающегося колебания поглотит амортизатор. Продолжительность колебаний до возвращения пружины в исходное положение при этом уменьшится до 0,5-1,5 циклов.

Надёжный контакт колеса с дорогой обеспечивается не только шинами, основными упругими и демпфирующими элементами подвески (пружина, амортизатор), но и её дополнительными упругими элементами (буферы сжатия, резинометаллические шарниры), а также тщательным согласованием всех элементов между собой и с кинематикой направляющих элементов.

Таким образом, чтобы автомобиль обеспечивал комфорт и безопасность, между кузовом и дорогой должны быть:

шины

основные упругие элементы

дополнительные упругие элементы

направляющие устройства подвесок

демпфирующие элементы.

Шины первыми в автомобиле воспринимают неровности дороги и, насколько это возможно, в силу их ограниченной упругости, смягчают колебания от профиля дороги. Шины могут служить индикатором исправности подвески: быстрый и неравномерный (пятнами) износ шин свидетельствует о снижении сил сопротивления амортизаторов ниже допустимого предела.

Основные упругие элементы (пружины, рессоры) удерживают кузов автомобиля на одном уровне, обеспечивая упругую связь автомобиля с дорогой. В процессе эксплуатации упругость пружин меняется вследствие старения металла или из-за постоянной перегрузки, что приводит к ухудшению характеристик автомобиля: уменьшается высота дорожного просвета, изменяются углы установки колёс, нарушается симметричность нагрузки на колёса. Пружины, а не амортизаторы удерживают вес автомобиля. Если дорожный просвет уменьшился и автомобиль «просел» без нагрузки, значит, пришло время менять пружины.

Дополнительные упругие элементы (резинометаллические шарниры или буферы сжатия) отвечают за подавление высокочастотных колебаний и вибраций от соприкосновения металлических деталей. Без них срок службы элементов подвески резко сокращается (в частности в амортизаторах: из-за усталостного износа клапанных пружин). Регулярно проверяйте состояние резинометаллических соединений подвески. Поддерживая их работоспособность, Вы увеличите срок службы амортизаторов.

Направляющие устройства (системы рычагов, рессоры или торсионы) обеспечивают кинематику перемещения колеса относительно кузова. Задача этих устройств в том, чтобы сохранять плоскость вращения колеса двигающегося вверх при сжатии подвески и вниз при отбое) в положении близком к вертикальному, т.е. перпендикулярно дорожному полотну. Если геометрия направляющего устройства нарушена, поведение автомобиля резко ухудшается, а износ шин и всех деталей подвески, в том числе и амортизаторов, значительно ускоряется.

Демпфирующий элемент (амортизатор) гасит колебания кузова, вызванные неровностями дороги и инерционными силами, а следовательно, уменьшает их влияние на пассажиров и груз. Он также препятствует колебаниям неподрессоренных масс (мосты, балки, колёса, шины, оси, ступицы, рычаги, колёсные тормозные механизмы) относительно кузова, улучшая тем самым контакт колеса с дорогой.

Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах. На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти «в отрыв» от земли. Вот в отрыв-то ему и не дает возможности уйти стабилизатор, который, прижавшись к земле одним концом, вторым своим концом прижимает и другую сторону автомобиля. А при наезде какого-либо колеса на препятствие, стержень стабилизатора закручивается и стремится побыстрее вернуть это колесо на свое место.

Как сделать танцующую жидкость своими руками.
Как сделать танцующую жидкость своими руками.

Как сделать танцующую жидкость своими руками.

Такая нетривиальная субстанция, как неньютоновская жидкость (структура которой меняется в зависимости от силы сопротивления) может стать отличным развлечением.

Приготовьте простейший вариант этой жидкости - смесь кукурузного (или обычного) крахмала и воды в соотношении 2:1.

Хорошо перемешайте и начинайте развлекаться: если вы медленно опустите в нее пальцы, она будет жидкой, стекающей с рук, а если со всей силы ударите по ней кулаком, то поверхность жидкости превратится в упругую массу.

Теперь эту массу можно вылить на противень, поставить противень на сабвуфер или колонку и громко включить динамичную музыку (или какой-нибудь вибрирующий шум).

От разнообразия звуковых волн масса будет вести себя по-разному - где-то уплотняясь, где-то нет, отчего и образуется живой танцующий эффект.

Добавьте несколько капель пищевого красителя и вы увидите, как своеобразно окрасятся танцующие "червячки".

Необычный велосипед компании Yeti радикально оптимизирует езду по б...
Необычный велосипед компании Yeti радикально оптимизирует езду по б...

Необычный велосипед компании Yeti радикально оптимизирует езду по бездорожью

Новый карбоновый велосипед Yeti SB5c может заинтересовать всех любителей прокатится по каменистым холмам и глухим скалистым тропам. Его 27.5-дюймовые колёса являют собой компромисс между более лёгкими 26-дюймовыми вариантами и качествами почти что парового катка 29-дюймовых моделей.

Новая подвеска велосипеда оптимизирует эффективность педалирования, сглаживая мелкие неровности дороги и давая контроль над спуском во время съездов с холма. Она использует систему «передающего блока», состоящего из пары коротких направляющих, размещённых над нижним кронштейном велосипеда. Блок перемещается по этим направляющим вверх, чтобы облегчить педалирование, а по мере подъёма задней части, он опускается вниз, увеличивая натяжение цепи и давая лучший контроль над задним колесом.

Другие примечательные характеристики велосипеда включают в себя 127мм задний амортизатор Fox Float и 140мм вилку; дисковые тормоза Shimano XT, и 11-скоростную кассету SRAM. Вы также можете выбрать между подседельными штырями Thomson Elite и Elite Dropper. Изогнутая рама велосипеда поставляется в бирюзовом или чёрном цвете, и вся система в сборе весит 10.4 килограмма.

yy: - А почему вообще мужики ссут мимо писсуаров?
xx^ — Ну это просто: отводная трубка выходной гидросистемы у мужчин гораздо
длиннее и тоньше женской, поэтому, при одинаковой силе сжатия резервуара
и создания равнозначных давлений, скорость истечения рабочей жидкости из
сопла будет значительно выше, что вкупе с мягкой конструкцией отводного
патрубка и неравномерностью его обжатия руками в момент изначального
прицеливания вносит большой элемент случайности в гидродинамику всей
системы и заставляет вводить отрицательную обратную связь по полярным
координатам в системе цели в виде относительно медленной ручной
коррекции, которая не успевает за лавинообразно растущим потоком
жидкости. Также надо учитывать неизбежные флуктуации начальных условий,
зависимые от множества параметров, включая, например, температуру
внешней среды, и возможность самовозбуждения системы с закономерным
изменением геометрии оной, и, как следствие, гидродинамики. Другими
словами я и сам никогда заранее не знаю, куда нассу!

Прочитать...
Система экстренного торможения
Система экстренного торможения

Система экстренного торможения

Эффективно использовать тормоза автомобиля в критических ситуациях помогает система экстренного торможении

Существует две группы вспомогательных систем: Brake Assist System (BAS), или система помощи при экстренном торможении, и Система автоматического экстренного торможения. BAS несколько проще: она добавляет усилий, помогая водителю использовать максимальный ресурс тормозной системы. Распространенный случай: водитель не смог продавить педаль тормоза до упора (не рассчитал усилие или под педаль закатилась бутылка), в результате тормоза не сработали на 100. Если бы использовалась система помощи при экстренном торможении, электроника рассчитала бы необходимое усилие и добавила его автоматически.

Система автоматического торможения активируется без участия водителя. Электроника «понимает» в какой момент необходимо вмешаться, получая данные с множества датчиков установленных в автомобиле.

История появления

Система экстренного торможения, помощник торможения и другие механизмы, работающие с тормозами автомобиля, являются дополнениями к антиблокировочной системе. Они начали вводиться с 1970 года, а первопроходцем стал автомобиль компании Chrystler. На сегодняшний день ситуация в корне изменилась.

Если раньше подобные опции были доступны только для дорогостоящих моделей представительского класса, то сейчас такие системы пытаются сделать обязательными для всех классов. Комитет Euro NCAP опубликовал отчет о распространении систем автоматического экстренного торможения (AEB) на современных автомобилях. С 2014 года наличие на машине такого устройства станет обязательным условием получения за краш-тест максимальной оценки в пять звезд. Такое нововведение – первый шаг на пути к автомобильной революции.

Вероятно, со временем подобные системы будут обязательным требованием для выпуска модели в серийное производство. Трудно судить, как скоро это произойдет, но с каждым годом количество автомобилей, оборудованных вспомогательными системами, стремительно увеличивается. Уже сейчас они имеются в наличии на Chevrolet Aveo и Ford Focus, стоимость которых варьируется от 500 тысяч до 1 млн. рублей. Раньше, такое могли себе позволить только Mercedes и Volvo представительского класса.

Принцип работы

Система помощи при экстренном торможении (BAS) работает как с воздушными, так и с гидравлическими тормозными системами. Для распознавания ситуации используются измерительные приборы, которые устанавливаются по всему автомобилю:

- датчик частоты вращения колес;

- датчик скорости перемещения штока вакуумного усилителя (прибор, который фиксирует, с какой силой нажали на педаль тормоза);

- датчик давления жидкости в тормозной системе (принцип тот же, что и у штока вакуумного усилителя, но этот применяется для гидравлической системы тормозов);

Если говорить о жидкостной системе тормозов, то BAS управляет давлением жидкости. Гидравлическая система устроена таким образом, что тормозной механизм находится под управлением гидравлического привода. Тормозная педаль передает усилие от ноги водителя на тормозной цилиндр, наполненный жидкостью. Благодаря давлению, которое создается с помощью жидкости, поршень движется и заставляет тормозной механизм сжиматься. Система помощи при экстренном торможении управляет давлением жидкости в цилиндрах, тем самым добавляя тормозное усилие, если в этом есть необходимость.

Системы такого типа делятся на группы. Они различаются количеством датчиков, на показании которых основывают свою работу. Самые совершенные из них устанавливаются на BMW и Mercedes-Benz. Такие системы учитывают множество факторов: силу нажатия на педаль тормоза, качество дорожного покрытия, направление движения и контроль расстояния до идущего впереди автомобиля.

Если тормозная система работает с помощью пневматического привода, то давление регулирует сжатый воздух. Он передвигает поршень (шток вакуумного усилителя), тем самым увеличивая тормозное усилие. Система помощи при экстренном торможении регулирует давление воздуха, что позволяет контролировать перемещение поршня.

Система помощи при экстренном торможении работает в паре с системой ABS.

В помощь ABS и BAS устанавливается система экстренного торможения. Ее основное отличие в том, что она сама применяет торможение, если данные, полученные с датчиков, сообщают об опасности. Для работы системы используются радары, которые рассчитывают расстояние до идущего впереди автомобиля. Если данные радара показывают интенсивное сокращение расстояния, то система сама применяет торможение. Реализуется контроль над тормозной системой по принципу BAS – увеличивается давление в тормозных цилиндрах.

Автомобили, оснащенные такой электроникой, признаны эталонами безопасного передвижения. Даже если столкновение произойдет, последствия могут быть менее трагичными, поскольку автоматика позволит максимально снизить скорость. Условия передвижения сегодня вынуждают производителей уделять такое внимание безопасности. Низкий уровень культуры вождения, отсутствие опыта сказывается на дорожной обстановке. С каждым годом на дорогах появляется все больше новичков, неуверенные действия которых могут привести к ДТП. Именно для этой группы водителей особенно актуально использование автомобиля оснащенного системами помощи при экстренном торможении.

"Да и как бы в кулинарных книгах обычно крупы/порошки/жидкости стаканами меряют, если не в граммах."
У меня в книжном шкафу стоит книга для молодых хозяек (или как-то так) которую маме дарили на свадьбу в 1973 году. Там ВСЁ в граммах или миллилитрах. В том числе "порезать мясо вдоль волокон кусочками по 10 гр". И странное слово "прибавить": "выложить мясо в кастрюлю с 420 мл бульона, прибавить 20 гр томат-пасты". Но добило меня "300 гр яиц" в рецепте какого-то теста. Не так давно я узнала, что рецепты были из общепитовских стандартов и норм, просто уменьшенные для, допустим, трёх порций, а не тридцати. На сотню пирожков действительно яйца в штуках считать задолбаешься, а как выглядит кусочек мяса в 10-20-30 гр повара знают наизусть с первого курса (или как это в ПТУ называлось?).

Прочитать...
Главный тормозной цилиндр
Главный тормозной цилиндр

Главный тормозной цилиндр

Главный тормозной цилиндр типа тандем показан на рисунке. В корпусе друг за другом (тандемно) размещены два поршня. В первый поршень упирается шток усилителя тормозов, второй поршень установлен свободно. Поршни уплотняются в цилиндре двумя резиновыми кольцами. В исходном расторможенном положении поршни прижимаются к ограничителям возвратными пружинами. На верхней части главного цилиндра через резиновые втулки закреплен бачок с запасом тормозной жидкости.

Бачок внутри разделен перегородкой на два объема, соединенные каналами с полостями соответствующих секций главного цилиндра. Стенки бачка прозрачные, на них выполнены метки, по которым осуществляется визуальный контроль за уровнем жидкости в бачке. В крышке бачка имеется датчик аварийного уровня поплавкового типа. При падении уровня жидкости ниже определенного уровня на приборном щитке автомобиля загорается сигнальная лампа. Бачок служит для пополнения жидкости в гидроприводе в случае небольших утечек.

При торможении шток усилителя тормозов перемещает первый поршень, который при этом в полости перед поршнем и в соединенном с ней трубопроводом контуре системы создает давление жидкости. Это же давление воздействует на второй поршень, который, перемещаясь, создает давление во втором контуре.

Если в результате повреждения привода произойдет утечка жидкости из контура переднего поршня, то при нажатии тормозной педали первый поршень совершит большее перемещение и войдет в контакт со свободным поршнем. В камере свободного поршня будет создано давление жидкости, которое приведет в действие тормоза исправного контура.

В случае утечки жидкости из контура свободного поршня при нажатии тормозной педали он упирается в ограничитель, в результате чего обеспечивается создание избыточного давления жидкости в камере первого поршня и в соответствующем контуре привода.

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...
Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. Машина начала выпускаться на Белорусском автомобильном заводе. Самосвал способен перевозить 450 тонн груза.
Полная масса загруженного автомобиля составляет 810 тонн.Следует сказать, что до этого рекорд самого большого самосвала в мире держал грузовик грузоподъемностью 400 тонн.
Это был Terex MT 6300AC грузоподъемностью 400 тонн.

Технические характеристики Белаз-75710:

Двигатель: Два дизельных четырехтактных двигателя с непосредственным впрыском топлива
Номинальная мощность при 1900 об. в мин. 2x1715 кВт
Количество цилиндров: 16
Диаметр цилиндра: 165 мм
Ход поршня: 195 мм
Максимальный крутящий момент при 1500 об. в мин. 9313 Нм
Удельный расход топлива, г / кВт час 2x198
Система предпускового подогрева жидкости типа.
Система пуска - пневматический стартер.
Охлаждение диска рабочего колеса системы - гидравлическая муфта с автоматическим управлением.
Тяговый генератор: YJ177A мощность, кВт 1704
Тяговый электродвигатель: 1TB3026 - 0GB03 мощность, кВт 1200
Максимальная скорость 60 км/час
Радиус поворота, 19,8 м.
Габаритный диаметр разворота , 45 м.
Подъем кузова с помощью телескопических цилиндров с двумя ступенями и одной стадией двойного действия.
Время подъема, с 26
Время опускания, с 20
Давление в системе, МПа 26
Грузоподъемность – 450 тонн.

Уровень шума в кабине не превышает 80 дБ.
Местный уровень вибрации составляет не более 126 дБ. Общий уровень вибрации
не более 115 дБ.
Среди дополнительных устройств можно назвать: систему видеонаблюдения, система контроля давления в шинах, климат – контроль в кабине водителя.

Какие бывают причины заноса и как на них влияют амортизаторы.
Какие бывают причины заноса и как на них влияют амортизаторы.

Какие бывают причины заноса и как на них влияют амортизаторы.

При движении автомобиля важным фактором, обеспечивающим безопасное и эффективное удерживание колес на поверхности дороги при поворотах, торможении, является исправность амортизаторов.
Факторы, влияющие на износ и потерю работоспособности амортизаторов: длительный срок эксплуатации, суровые дорожные условия, коррозия (вода, реагенты).

Частичная потеря работоспособности амортизаторов в зависимости от условий, в которых их эксплуатируют, проявляется через 60 000 км.
Амортизатор, теряющий способность выполнять свои функции, приводит к сложностям в управлении автомобилем. Как это проявляется? Основные сложности: удлиняется тормозной путь, снижается уровень сцепления колёс с дорожным покрытием, отмечаются осложнения при прохождении поворотов, снижение эффективности электронных систем (ABS, ASR, ESP).

Неотложная необходимость в проверке и замене амортизаторов при возникновении хотя бы одного из признаков:
- пробег авто превышает 80 000 км;
- при вхождении в поворот садится передняя часть автомобиля;
- повышенный износ шин;
- сложности в управлении автомобилем;
- чувствительность выбоин и неровностей дороги;
- амортизаторы покрыты маслом;
- механические повреждения штока;
- неустойчивость автомобиля в различных дорожных условиях.

Верхние опоры улучшают качество взаимодействия между амортизатором и шасси и постоянно подвержены механическим вибрациям. Производите замену верхних опор единовременно с заменой амортизаторов и убедитесь в качестве полученных результатов: уровень сцепления с дорогой на порядок выше, повышается чёткость в управлении, эффект вибрации сводится к минимуму, срок эксплуатации амортизаторов увеличивается.

С велофорума:
Народ у нас безграмотный а продавцы очень ушлые.
Мужу двоюродной сестры впарили велосипед с газовым амортизатором (вилкой). Брат мне: Мишань пойдём покажу чё мой свояк купил за 25 тыр... Тормоза ляляля газовый амортизатор...
Я ему: какой в пень газовый может воздушный??? (А сам думаю чё за нах?)
Ну пришёл, стоит обычный Стелс с гидрой начального уровня и вилкой РСТ эластомеркой (обвес по кругу тоже самый простой). Я такой репу чешу: и где тут газ? Он такой: ну я не знаю, они сказали тип счас под ваш вес газом наполним вилку (амортизатор), только вы потом ничего не трогайте... Мдяяяя... Крутилку жёсткости покрутили и насосом изобразили дикую подкачку.
Так что не удивлюсь, что народу тупо впаривают сии чудные агрегаты под видом велов проф уровня, а когда на них все мы смотрим как на идиотов, они считают что мы просто прёмся и завидуем ихним самокатам )))

Прочитать...

А то, что "литр гвоздей" имеет неоднородную структуру? Как учтешь еще такую вводную?

- А если найти реальный объем гвоздей через объем вытесняемой ими жидкости?

Прочитать...

не было в советских автоматах "с газом" и "без газа".
было - "с сиропом" и "без сиропа".
газ был по умолчанию.
а от сиропа можно было отказаться, чтоб жопа не слиплась.
или с двойным-тройным замутить, только монетки докидывай и стакан вовремя отодвигай.

Прочитать...
Как сделать танцующую жидкость.
Как сделать танцующую жидкость.

Как сделать танцующую жидкость.

Такая нетривиальная субстанция как неньютоновская жидкость (структура которой меняется в зависимости от силы сопротивления) может стать отличным развлечением для детей.

Приготовьте простейший вариант этой жидкости - смесь кукурузного (или обычного) крахмала и воды в соотношении 2:1.

Хорошо перемешайте и начинайте развлекаться: если вы медленно опустите в нее пальцы, она будет жидкой, стекающей с рук, а если со всей силы ударите по ней кулаком, то поверхность жидкости превратится в упругую массу.

Теперь эту массу можно вылить на противень, поставить противень на сабвуфер или колонку и громко включить динамичную музыку (или какой-нибудь вибрирующий шум).
От разнообразия звуковых волн масса будет вести себя по-разному - где-то уплотняясь, где-то нет, отчего и образуется живой танцующий эффект.

Добавьте несколько капель пищевого красителя и вы увидите как своеобразно окрасятся танцующие "червячки".

xxx:
Как-то переводили текст из учебника по ДВС с английского. Решили воспользоваться электронным переводчиком. Фразу "Spring pushes the piston" переводчик перевёл явно зная суть: "Весна давит на поршень" вместо "Пружина толкает поршень".

Прочитать...

...Механизм лакания жидкости кошкой состоит в том, что её язык вытягивается со скоростью 1 м/с, подгибается вниз и касается поверхности жидкости, но, в отличие от лакания собак, не проникает в неё. Затем язык устремляется вверх и увлекает за собой столбик жидкости. Кошка заглатывает жидкость в тот момент, когда вертикальная составляющая скорости жидкости замедляется гравитацией и становится равной нулю. В этот момент челюсти кошки смыкаются, и жидкость проглатывается. Этот процесс повторяется с периодичностью 4 раза в секунду.

Прочитать...

- Может тебе заняться этим, как его, когда альбомы красивые делают
- Сквиртингом?
- "Сквиртинг - это особая разновидность женского оргазма, сопровождающегося обильным выделением жидкости". Занятное хобби да, но я про скрапбукинг

Прочитать...

xxx— А почему вообще мужики ссут мимо писсуаров?
yyy— Ну это просто: отводная трубка выходной гидросистемы у мужчин гораздо длиннее и тоньше женской, поэтому, при одинаковой силе сжатия резервуара и создания равнозначных давлений, скорость истечения рабочей жидкости из сопла будет значительно выше, что вкупе с мягкой конструкцией отводного патрубка и неравномерностью его обжатия руками в момент изначального прицеливания вносит большой элемент случайности в гидродинамику всей системы и заставляет вводить отрицательную обратную связь по полярным координатам в системе цели в виде относительно медленной ручной коррекции, которая не успевает за лавинообразно растущим потоком жидкости. Также надо учитывать неизбежные флуктуации начальных условий, зависимые от множества параметров, включая, например, температуру внешней среды, и возможность самовозбуждения системы с закономерным изменением геометрии оной, и, как следствие, гидродинамики. Другими словами я и сам никогда заранее не знаю, куда нассу!

Прочитать...

— А почему вообще мужики ссут мимо писсуаров?
— Ну это просто: отводная трубка выходной гидросистемы у мужчин гораздо
длиннее и тоньше женской, поэтому, при одинаковой силе сжатия резервуара
и создания равнозначных давлений, скорость истечения рабочей жидкости из
сопла будет значительно выше, что вкупе с мягкой конструкцией отводного
патрубка и неравномерностью его обжатия руками в момент изначального
прицеливания вносит большой элемент случайности в гидродинамику всей
системы и заставляет вводить отрицательную обратную связь по полярным
координатам в системе цели в виде относительно медленной ручной
коррекции, которая не успевает за лавинообразно растущим потоком
жидкости. Также надо учитывать неизбежные флуктуации начальных условий,
зависимые от множества параметров, включая, например, температуру
внешней среды, и возможность самовозбуждения системы с закономерным
изменением геометрии оной, и, как следствие, гидродинамики. Другими
словами я и сам никогда заранее не знаю, куда нассу!

Прочитать...

Из википедии
Механизм лакания жидкости кошкой состоит в том, что её язык вытягивается со скоростью 1 м/с, подгибается вниз и касается поверхности жидкости, но, в отличие от лакания собак, не проникает в неё. Затем язык устремляется вверх и увлекает за собой столбик жидкости. Кошка заглатывает жидкость в тот момент, когда вертикальная составляющая скорости жидкости замедляется гравитацией и становится равной нулю. В этот момент челюсти кошки смыкаются, и жидкость проглатывается. Этот процесс повторяется с периодичностью 4 раза в секунд.
Не то что мы,глыть-глыть.

Прочитать...

*Сидим с подругой выбираем ей коляску.
Из описания к обычной детской коляски :
Параметры:6 амортизаторов для комфортной езды; рама спортивная, хромированная; тип колес шины, механизм вращения на подшипниках с литыми дисками; тормозная система двух сторонняя, планочная; система амортизации - амортизаторы на всех колесах два амортизатора на раме; механизм сложения книжкой; ручка – перекидная и регулируемая по высоте; механизм капора на трещотке бесшумный; в наличии смотровое окошко на верхней части капора; люлька переноска с жестким дном; прогулочный блок - три положения спинки; пяти точечные ремни безопасности; регулируемая нижняя металлическая подножка; летняя сетка на задней части капора...
*Мимо проходит отец подруги и выдает :
-Да она однако укомплектована лучше чем лада калина!!! о_О

Прочитать...

Давно это было. Едем из Тарусы домой в Москву. Едем на Фольксваген
Коррадо. Машина полуспортивная, сзади места почти детские. Но на них
4 человека, все скрючившись кое-как, но ехать надо. Надо заметить, что
в силу конструктивных особенностей, задний амортизатор почти под задним
сиденьем. А амортизатор с правой стороны убитый - на каждой кочке
пробивает. Миша сидит почти над ним. Через час пути спрашивает хозяина
машины:
- Колюха!!! А мне амортизатор в ж"пу не влезет?
- Не знаю, приедем в Москву - попробуем!!!
.... Едва с дороги не слетели....

Прочитать...
Мы Вконтакте vk.com/bibofun
Лучшее за неделю

Лучшие авторы


Все материалы, которые размещены на сайте, представлены только для ознакомления и являются собственностью их правообладателя. Администрация не несет ответственности за информацию, размещенную посетителями сайта. Сообщения, оставленные на сайте, являются исключительно личным мнением их авторов, и могут не совпадать с мнением администрации. письма слать на: sitemagnat@gmail.com