18+
1 секунда Для мозга Хочу знать Исторические факты Реклама Советы Путешествия Авто
«    Февраль 2019    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
25262728 


Путешествия

Авто

29-01-2015

Автоматическая КПП

Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя.
Но даже самые совершенные гидромеханические коробки не лишены недостатков. К ним относятся: сложность конструкции, высокая цена и стоимость обслуживания, более низкий КПД, худшая динамика и повышенный расход топлива по сравнению с механической КПП, медлительность переключений.

Устройство и принцип работы

Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.
Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта - устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, - с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.
Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе. Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.
Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.

Режимы работы гидротрансформатора

Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.
Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.
Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.
При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.

Как работает планетарная передача

Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.
В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.
Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.
Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.
Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.
Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции - вот ее неоспоримые достоинства.
Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора. Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона. Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток - низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.
Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.
Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.
Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.

Как работает система управления

Системы управления АКПП бывают двух типов: гидравлические и электронные. Гидравлические системы используются на устаревших или бюджетных моделях, современные АКПП управляются электроникой.
Устройством «жизнеобеспечения» для любой системы управления является масляный насос. Его привод осуществляется непосредственно от коленвала двигателя. Масляный насос создает и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленвала и нагрузки на двигатель. В случае отклонения давления от номинального функционирование АКПП нарушается ввиду того, что исполнительные механизмы включения передач управляются давлением.
Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления существуют два датчика: скоростной регулятор и клапан - дроссель или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном валу АКПП. Чем быстрее едет машина, тем больше открывается клапан, тем больше давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан — дроссель соединяется тросом либо с дроссельной заслонкой (в бензиновых двигателях), либо с рычагом ТНВД (в дизелях). В некоторых автомобилях для подачи давления на клапан - дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны формируют давления, пропорциональные скорости движения автомобиля и загруженности двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора. В «принятии решения» о переключении передачи участвует и клапан выбора диапазона, который соединен с рычагом селектора АКПП и, в зависимости от его положения, запрещает включение определенных передач. Результирующее давление, создаваемое клапаном — дросселем и скоростным регулятором, вызывает срабатывание соответствующего клапана переключения. Причем, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при спокойном разгоне.
Как это происходит? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны и от клапана - дросселя с другой. Если машина ускоряется медленно, давление от гидравлического клапана скорости нарастает, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, клапан - дроссель не создает большое давление на клапан переключения. Если же машина ускоряется быстро, клапан - дроссель создает большее давление на клапан переключения, препятствуя его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превысить давление от клапана — дросселя, но это произойдет при достижении автомобилем более высокой скорости, чем при медленном разгоне.
Каждый клапан переключения соответствует определенному уровню давления: чем быстрее движется автомобиль, тем более высшая передача включится. Блок клапанов представляет собой систему каналов с расположенными в них клапанами и плунжерами. Клапаны переключения подают гидравлическое давление на исполнительные механизмы: муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач. Тормоз - это механизм, который осуществляет блокировку элементов планетарного ряда на неподвижный корпус АКПП. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.
Электронная система управления так же, как и гидравлическая, использует для работы два основных параметра: скорость движения автомобиля и нагрузку на двигатель. Но для определения этих параметров используются не механические, а электронные датчики. Основными из них являются датчики: частоты вращения на входе коробки передач, частоты вращения на выходе коробки передач, температуры рабочей жидкости, положения рычага селектора, положения педали акселератора. Кроме того, блок управления АКПП получает дополнительную информацию от блока управления двигателем и других электронных систем автомобиля (например, от АБС). Это позволяет более точно, чем в обычной АКПП, определять моменты переключений и блокировки гидротрансформатора. Программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко вычислить силу сопротивления движению автомобиля и ввести соответствующие поправки в алгоритм переключения, например, попозже включать повышенные передачи на полностью загруженном автомобиле.
АКПП с электронным управлением так же, как и простые гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент, но каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.
Применение электроники существенно расширило возможности АКПП. Они получили различные режимы работы: экономичный, спортивный, зимний. Резкий рост популярности «автоматов» был вызван появлением режима Autostick, который позволяет водителю самостоятельно выбирать нужную передачу. Каждый производитель дал такому типу коробки передач свое название: Audi - Tiptronic, BMW - Steptronic. Благодаря электронике в современных АКПП стала доступна и возможность их «самообучения», т.е. изменение алгоритма переключений в зависимости от стиля вождения. Электроника предоставила широкие возможности для самодиагностики АКПП. И речь идет не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, вносит необходимые коррективы в работу АКПП.







Нравится(+) 0 Не нравится(-) Google+
Строение генератора автомобиля представляет собой совокупность отде...
Строение генератора автомобиля представляет собой совокупность отде...

Строение генератора автомобиля представляет собой совокупность отдельных элементов собранных в одном корпусе.

1.Корпус генератора является одновременно и основанием для статорной обмотки. Выполнен из легко сплавных металлов (чаще дюралюминий), и имеет «окна» для лучшего охлаждения во время работы. В задней и передней частях корпуса расположены подшипники для крепления на них ротора.

2.Статорная обмотка генератора выполнена из медного провода и уложена в пазах сердечника. Сердечник выполнен в виде круга и изготавливается из металла с улучшенными магнитными характеристиками (трансформаторное железо). Поскольку генератор автомобиля является трехфазным производителем энергии, поэтому статор имеет три обмотки, соединенные между собой треугольником. В местах соединения фазных обмоток к ним подключается выпрямительный мост. Провод для изготовления фазных обмоток имеет двойную термоустойчивую изоляцию, чаще всего применяется специальный лак.

3.Ротор представляет собой электромагнит и имеет одну обмотку. Обмотка располагается на валу ротора. Сверху обмотки ротора расположен сердечник из ферро магнитного материала. Диаметр сердечника на 1,5-2 мм меньше диаметра статора. Для подачи напряжения управления с реле-регулятора на обмотки ротора, применяются медные кольца, которые располагаются на валу и соединены с обмоткой ротора посредством графитовых щеток. Реле-регулятор, выполняет функцию контроля и регулировки напряжения на выходе генератора. Выполнен в виде электронной схемы и имеющий выходы к щеткам.

4.Реле-регулятор может устанавливаться как непосредственно в корпусе генератора, в этом случае регулятор выполняется в одном корпусе со щетками. Или отдельно от генератора, тогда щетки устанавливаются на щеткодержатель.

5.Выпрямительный мост имеет шесть диодов с прямым током более 40 Ампер. Диоды располагаются на токопроводящих основаниях (плюсовом и минусовом), попарно и соединены по схеме Ларионова. Соединение по этой схеме позволяет на выходе получить постоянное напряжение из трёхфазного переменного. В народе выпрямительный мост именуется «подковой», потому, что токопроводящие основания диодов для удобного расположения в корпусе, имеют вид подковы.

В основу работы автомобильного генератора положен принцип порождения переменного электрического напряжения в обмотках статора под воздействием постоянного магнитного поля, которое образуется вокруг сердечника ротора. Двигатель приводит в действие ротор генератора при помощи ременной передачи. На обмотку возбуждения (ротора) подается постоянное электрическое напряжение, достаточное для образования магнитного потока. При вращении сердечника вдоль обмоток статора, в последних наводится ЭДС. Сила магнитного потока регулируется реле-регулятором, увеличением или уменьшением подаваемого напряжения на щетки, и зависит от нагрузки, снимаемой с плюсовой клеммы генератора. Напряжение на выходе генератора колеблется в пределах 13,6 в летнее время и 14,2 в зимний период (для реле-регуляторов у которых имеется встроенный контроль температуры окружающего воздуха). Такого напряжения достаточно для дозаряда аккумулятора и поддержания его в заряженном состоянии. Бортовая сеть так же питается от клеммы генератора автомобиля и включена параллельно аккумулятору.

От 0 до 100 км/ч за 1.785 секунды: Электрический автомобиль Grimsel...
От 0 до 100 км/ч за 1.785 секунды: Электрический автомобиль Grimsel...

От 0 до 100 км/ч за 1.785 секунды: Электрический автомобиль Grimsel устанавливает новый мировой рекорд ускорения

Студенческая команда из Швейцарского федерального Технологического института в Цюрихе (Swiss Federal Institute of Technology Zurich, ETH Zurich) и Университета прикладных наук и искусства Люцерна (Lucerne University of Applied Sciences and Arts) стала обладателем нового мирового рекорда по ускорению электрического автомобиля. Их электрический автомобиль Grimsel разогнался 0 до 100 км/ч за 1.785 секунды, пройдя при этом менее 30 метров пути, и это достижение сместило с пьедестала почета рекорд в 2.134 секунды, установленный студенческой командой Технологического университета Дельфта (Delft University of Technology) в 2013 году.

Рекордный заезд проводился на военном аэродроме близ Дюбендорфа, Швейцария, а в настоящее время ожидается официальное признание этого рекорда комитетом Книги мировых рекордов Гиннеса. Но самым интересным является тот факт, что автомобиль Grimsel был с начала и до конца спроектирован и построен студенческой командой, которая входит в состав команды Formula Student при Академическом клубе мото- и автоспорта Цюриха (Academic Motorsports Club Zurich, AMZ).

На разработку и изготовление автомобиля Grimsel ушло 12 месяцев работы команды из 30 человек. Кузов автомобиля изготовлен из легкого углеродистого волокна, поэтому его общий вес составляет всего 168 килограмм, которые заставляют двигаться электрические двигатели суммарной мощностью 200 лошадиных сил. Основу трансмиссии автомобиля Grimsel составляет интегрированная планетарная коробка передач, но основную тягу обеспечивают четыре электродвигателя AMZ M4, которые имеют мощность по 50 лошадиных сил и обеспечивают крутящий момент в 1630 нм.

Механическая коробка передач
Механическая коробка передач (5 фото)

Механическая коробка передач

Механическая коробка передач (МКПП) представляет собой набор шестерен, которые входят в зацепление в различных сочетаниях, образуя несколько передач или ступеней с различными передаточными числами. Чем больше число передач, тем лучше автомобиль «приспосабливается» к различным условиям движения.

Преимущества:

Наименьшая по сравнению с другими типами КПП стоимость и масса;
Высокие КПД, топливная экономичность и динамика разгона;
Простота и отработанность конструкции, а следовательно - высокая надежность;
Не требуют дорогостоящих расходных материалов, просты в обслуживании;
Благодаря жесткой связи двигателя с ведущими колесами, водитель может более эффективно использовать автомобиль при передвижении в гололедицу, по грязи и бездорожью;
МКПП допускает полное разобщение двигателя и трансмиссии, поэтому такой автомобиль легко пускается «с толкача» и может буксироваться на любое расстояние с любой скоростью.

Недостатки:

Утомляющее водителя переключение передач, особенно в городском цикле и движении в пробках, необходимость навыка для правильного выбора передачи и плавного переключения передач без рывков;
Ступенчатое изменение передаточного отношения;
Малый ресурс сцепления.
Ступенчатые механические коробки передач выполняются по двум схемам: трехвальные и двухвальные. Трехвальная коробка передач устанавливается, как правило, на заднеприводные автомобили. Двухвальная механическая коробка передач применяется на переднеприводных и заднемоторных легковых автомобилях. Устройство и принцип работы этих коробок передач имеют различия, поэтому они рассмотрены отдельно.

• Трехвальная коробка передач

Как следует из названия, такая коробка имеет три вала: ведущий, промежуточный и ведомый.
Ведущий вал соединяется со сцеплением. На валу имеются шлицы для ведомого диска сцепления. Далее крутящий момент передается через шестерню, находящуюся на валу в жестком зацеплении, на промежуточный вал.
Промежуточный вал расположен параллельно ведущему валу. На валу располагается блок шестерен, находящийся с ним в жестком зацеплении.
Ведомый вал расположен на одной оси с ведущим. Такое расположение осуществляется за счет подшипника на ведущем валу, в который входит ведомый вал. Жёсткой связи они не имеют и вращаются независимо друг от друга. Блок шестерен ведомого вала не имеет закрепления с валом и свободно вращается на нем. Между шестернями ведомого вала располагаются муфты синхронизаторов. Муфты имеют жесткое зацепление с ведомым валом, но могут двигаться по нему в продольном направлении за счет шлицевого соединения. На торцах муфты имеют зубчатые венцы, которые могут входить в соединение с соответствующими зубчатыми венцами шестерен ведомого вала. На современных коробках передач синхронизаторы устанавливаются на всех передачах (кроме заднего хода).
Шестерня ведущего вала, блок шестерен промежуточного и ведомого вала находятся в постоянном зацеплении. При нейтральном положении рычага переключения крутящий момент от двигателя на ведомый вал не передается, а его шестерни свободно вращаются. При перемещении рычага КПП, соответствующая вилка перемещает муфту синхронизатора, который обеспечивает выравнивание (синхронизацию) угловых скоростей шестерни ведомого вала с угловой скоростью самого вала за счет сил трения. После этого, зубчатый венец муфты заходит в зацепление с зубчатым венцом шестерни и обеспечивается блокировка шестерни на ведомом валу. Ведомый вал передает крутящий момент от двигателя на ведущие колеса с заданным передаточным числом. При соединении синхронизатором первичного и вторичного валов (минуя шестерни) образуется прямая передача. Передаточное число прямой передачи равно единице. На прямой передаче шестерни вращаются вхолостую и не изнашиваются, коробка работает с максимальным КПД. Движение задним ходом обеспечивается за счет промежуточной шестерни заднего хода, устанавливаемой на отдельной оси. Шестерни трехвальной коробки передач обычно (кроме первой передачи и передачи заднего хода) делают косозубыми. Такие шестерни обладают повышенной прочностью, более долговечны и бесшумнее в работе, чем прямозубые.
Посмотреть анимированное изображение.

• Двухвальная коробка передач

Ведущий вал, также как и в трехвальной коробке, обеспечивает соединение со сцеплением. На валу жестко закреплен блок шестерен, а не одна шестерня, как в трехвальной коробке. Промежуточный вал отсутствует. Параллельно ведущему валу расположен ведомый вал с блоком шестерен. Шестерни ведомого вала находятся в постоянном зацеплении с шестернями ведущего вала и свободно вращаются на валу. На ведомом валу жестко закреплена ведущая шестерня главной передачи. Между шестернями ведомого вала установлены муфты синхронизаторов.
Принцип работы аналогичен трехвальной коробке. Однако прямой передачи в двухвальной коробке нет. Каждая передача, кроме заднего хода, создается одной парой шестерен, а не двумя, как в трехвальной коробке. Это повышает КПД двухвальной коробки, но не позволяет добиться большого передаточного числа. Поэтому и применяется она только в легковых автомобилях.

• Как работает синхронизатор

Синхронизатор служит для бесшумного переключения передач путем выравнивания угловых скоростей включаемых элементов. Он состоит из ступицы 1, муфты 2, двух блокировочных колец 3, трех сухарей 4, двух проволочных колец 5. Ступица устанавливается на шлицах вторичного вала и жестко фиксируется. На ступице нарезаны наружные зубья и пазы под сухари. Муфта расположена на зубьях ступицы и в среднем положении удерживается сухарями, выступы которых входят во внутреннюю кольцевую канавку муфты. Сухари прижимаются к муфте упругими кольцами (как вариант, вместо колец могут использоваться подпружиненные шарики). Бронзовые блокировочные кольца имеют наружные зубья со скосами и впадины под сухари; ширина впадин несколько больше ширины сухарей. Кольцо может провернуться относительно ступицы на величину разницы ширины паза кольца и ширины сухаря. Для увеличения сил трения на конической поверхности кольца нарезана резьба и выполнены продольные канавки.
Работает синхронизатор следующим образом. При включении передачи вилка переключения перемещает муфту в направлении шестерни включаемой передачи. При перемещении муфты усилие через сухари передается на одно из блокировочных колец, которое вместе с муфтой перемещается относительно ступицы в сторону включаемой шестерни до соприкосновения с ее конической поверхностью. Вследствие разности угловых скоростей включаемой шестерни и ведомого вала на конических поверхностях возникает сила трения, которая поворачивает блокировочное кольцо до упора его в сухари. При этом зубья блокировочного кольца станут напротив зубьев муфты и дальнейшее перемещение муфты становится невозможным. После выравнивания угловых скоростей шестерни и синхронизатора сила, сместившая блокировочное кольцо, исчезает; под действием усилия водителя оно вернется в первоначальное положение, чему способствуют скосы на зубьях муфты и кольца. После этого муфта свободно проходит между зубьями блокировочного кольца и соединяется с зубьями малого венца включаемой шестерни. При этом гребни сухарей выходят из кольцевой проточки муфты, а сухари утапливаются, преодолевая упругую силу кольцевых пружин. Шестерня жестко соединяется со вторичным валом, передача включается. Весь процесс занимает время порядка милисекунд. С помощью одного синхронизатора можно поочередно включать две передачи в коробке.

• Механизм переключения

Конструкция механизма переключения передач зависит от конструкции автомобиля. В заднеприводных рычаг располагается непосредственно на корпусе коробки передач. В этом случае весь механизм переключения расположен внутри корпуса коробки и рычаг напрямую воздействует на него. Плюсы такой схемы – простота, более чёткое переключение передач, меньший износ в процессе эксплуатации. Недостаток - такой привод непригоден для использования на большей части переднепри

Nissan создал 1,5-литровый двигатель мощностью 400 л.с
Nissan создал 1,5-литровый двигатель мощностью 400 л.с

Nissan создал 1,5-литровый двигатель мощностью 400 л.с

Nissan DIG-T R – трехцилиндровый бензиновый турбомотор рабочим объемом 1,5 л, развивающий мощность 400 л.с. При габаритах 500 х 400 х 200 мм (высота х длина х ширина) двигатель весит всего 40 кг.

Частота вращения коленчатого вала Nissan DIG-T R достигает 7500 мин-1, а максимальный крутящий момент – 380 Нм. Удельная мощность этого двигателя равна 10 л.с./кг, то есть она выше, чем у новых двигателей, которые будут использоваться в Чемпионате мира FIA «Формулы 1» в этом году.

DIG-T R войдет в состав силовой установки автомобиля Nissan ZEOD RC. Этот «электрический по требованию» болид, оснащаемый одновременно электромотором и ДВС с пятиступенчатой коробкой передач, примет участие в 24-часовой гонке в Ле-Мане 14–15 июня этого года. Nissan ZEOD RC будет выступать в категории «Garage 56», дополнительно учрежденной Автомобильным клубом (Automobile Club de l‘Ouest) для новых технологий, никогда ранее не виданных в классических французских гонках на выносливость.

Nissan ZEOD RC станет первым в истории Ле-Мана автомобилем, который пройдет круг по трассе Сарта (Circuit de la Sarthe), двигаясь исключительно на электроэнергии. Один круг из каждого «стинта» (stint – «смена», которую гонщик «отрабатывает» за рулем, длительностью примерно один час) ZEOD RC пройдет исключительно на электроэнергии. Затем к электромотору подключится новый двигатель DIG-T R.

Словарь автомобильных сокращений
Словарь автомобильных сокращений

Словарь автомобильных сокращений

4WD (4 Wheel Drive) - автомобиль с четырьмя ведущими колесами. (Обозначаются автомобили, у которых привод всех четырех колес включается вручную водителем).

4WS (4 Wheel Steering) - автомобиль с четырьмя управляемыми колесами

ABC (Active Body Control) - активный контроль кузова. Система активной подвески кузова автомобиля.

ABS (Antiblockier System)- Антиблокировочная система тормозов. Предотвращает блокировку колес при торможении автомобиля, что сохраняет его курсовую устойчивость и управляемость. Сейчас применяется на большинстве современных авто. Hаличие ABS позволяет нетренированному водителю не допускать блокировки колес.

AIRBAG -подушка безопасности. (Надувная подушка безопасности, которая при аварии заполняется газом и предохраняет водителя или пассажира от повреждений)

AMT (Automated Manual Transmission) - автоматизированная механическая трансмиссия (Механическая коробка передач с автоматическим переключением передач с помощью гидравлических или электрических исполнительных механизмов с автоматическим управлением сцеплением)

ARC - активный контроль крена. (Система, уменьшающая крен кузова автомобиля на поворотах. Заменяет стабилизаторы поперечной устойчивости. Изменяет жесткость пневматических или гидропневматических упругих элементов. Управление осуществляется от компьютера, получающего сигналы от датчиков поворота руля, боковых ускорений и др.)

AWD (All Wheel Drive) - автомобиль со всеми ведущими колесами. ( Так обозначаются полноприводные автомобили, которые имеют либо постоянный привод на все колеса, либо, подключаемый автоматически).

BA (Brake Assist) EBA (Electronic Brake Assist) - система помощи водителю при экстренном торможении. (Электронная система, которая реагирует на резкое нажатие тормозной педали водителем и обеспечивает более эффективное торможение в экстренных ситуациях).

BBW (Brake By Wire) - -«торможение по проводам». (Тормозная система, у которой нет механической связи между педалью тормоза и исполнительными механизмами. Тормозная педаль оборудована датчиками, а управляет процессом торможения компьютер).

Bifuel - автомобиль приспособленный для работы на двух видах топлива (Обычно газ и бензин)

Biturbo - турбонаддув с двумя турбонагнетателями

CAN bus - мультиплексная линия (Высокоскоростная линия передачи данных)

CBC (Cornering Brake Control) - электронная система перераспределения тормозных сил по бортам автомобиля.

CCB (Ceramic Composite Brake) - керамический композитный тормоз

CIDI (Compression Ignition Direct Injection) - дизельный двигатель с непосредственным впрыском

COMMON-RAIL - система питания дизеля с «общей рейкой». (Система питания дизелей, в которой насос высокого давления подает топливо в общий аккумулятор - рейку, а подача топлива в цилиндры двигателя осуществляется с помощью форсунок с электронным управлением. Система работает при высоких давлениях, более 100 Мпа, и обеспечивает лучшие показатели мощности, топливной экономичности и меньщую шумность работы дизеля).

CTPS - контактный датчик давления в шине. (Датчик, устанавливаемый в пневматической шине, сигнал от которого, используется для информирования водителя о давлении в каждой, конкретной шине автомобиля).

CVT (Continuously Variable Transmission) - -бесступенчатая трансмиссия с вариатором. (В автоматических коробках передач применяются клиноременные вариаторы с раздвигающимися шкивами и тороидные).

DCG (Direct Shift Gearbox) - коробка передач непосредственного переключения (Автоматическая коробка передач с параллельными ведомыми валами, в которой переключение передач происходит без разрыва мощности. Разработана Audi и серийно применяется на автомобилях фирмы)

DOHC (Double Overhead Camshaft) - ГРМ с двумя валами в головке цилиндров. (Привод таких газораспределительных механизмов осуществляется от коленчатого вала двигателя с помощью цепной или ременной передачи).

DSC (Dynamic Stability Control) - система динамического контроля устойчивости. (Система с электронным управлением, предотвращает занос и опрокидывание автомобиля, путем изменения тяги на отдельных колесах или применением торможения отдельных колес).

EAS (Electric Assist Steering) - электрический усилитель рулевого управления. (В электрических усилителях рулевого управления используются бесщеточные электродвигатели, получающие управляющие электрические сигналы от компьютера системы рулевого управления).

EBD (Electronic Brake Distribution) - В немецком варианте - EBV (Elektronishe Bremskraftverteilung). Электронная система распределения тормозных сил. Обеспечивает наиболее оптимальное тормозное усилие на осях, изменяя его в зависимости от конкретных дорожных условий (скорость, характер покрытия, загрузка автомобиля и т.п.). Главным образом, для предотвращения блокировки колес задней оси. Эффект особенно заметен на автомобилях с задним приводом. Основное назначение данного узла - распределение тормозных сил в момент начала торможения автомобиля, когда, согласно законам физики, под действием сил инерции происходит частичное перераспределение нагрузки между колесами передней и задней оси.

ECM (Electronic Control Module) - электронный контрольный модуль (Электронный блок управления двигателем, компьютер управления)

EDC (Electronic Damping Control) - электронный контроль демпфирования (Амортизаторы с постоянным электронным регулированием)
ECS - Электронная система управления жёсткостью амортизаторов.

ECU (Electronic Control Unit) - блок электронного управления работой двигателя.

EDC (Electronic Damper Control) - электронная система регулирования жесткости амортизаторов. Иначе ее можно назвать системой, заботящейся о комфорте. "Электроника" сопоставляет параметры загрузки, скорости автомобиля и оценивает состояние дорожного полотна. При движении по хорошим трассам EDC "приказывает" амортизаторам стать мягче, а при поворотах на высокой скорости и проезде волнообразных участков добавляет им жесткости и обеспечивает максимальное сцепление с дорогой.

EDIS (Electronic Distributorless Ignition System) - электронная бесконтактная система зажигания (без прерывателя - распределителя).

EDL (Electronic Differential Lock) - cистема электронной блокировки дифференциала.

EGR - система рециркуляции отработавших газов. (Система с электронным управлением, в которой с целью снижения вредных выбросов в атмосферу, часть выхлопных газов, на определенных режимах работы двигателя, подается обратно в цилиндры ДВС).

EHB (Electro Hydraulic Brake) - электрогидравлический тормоз. (Тормозная система, в которой гидравлическая система выполняет силовые функции, а управление торможением осуществляется с помощью электрических сигналов).

EPB (Electronic Parking Brake) - Стояночный тормоз с электронным управлением
EON (Enhanced Other Network) - встроенная навигационная система. В СНГ пока не работает, однако в Европе преимущество EON уже оценено по достоинству. Информация о пробках на дорогах, строительных работах, маршрутах объезда со спутника поступает в бортовой компьютер вашего автомобиля. Электронный мозг машины тут же дает водителю подсказку, какой дорогой пользоваться, а с какой лучше свернуть.

ESP (Electronic Stability Programm) - Она же ATTS, ASMS (Automatisches Stabilitats Management System), DSTC, DSC (Dynamic Stability Control), FDR (Fahrdynamik-Regelung), VDC, VSC (Vehicle Stability Control), VSA (Vehicle Stability Assist) - противозаносная система (ПЗС).

ETC (Electronic Throttle Control) - дроссельная заслонка с электронным контролем (Дроссельная заслонка, которая не имеет механической связи с педалью акселератора. Обычно управляется с помощью электродвигателя и имеет датчики положения)

ETS - электронный контроль сцепления с дорогой. (Противобуксовочная система - ПБС- с электронным управлением).

FCEV (Fuel Sell

Chrysler 300C '2004–07
Chrysler 300C '2004–07 (8 фото)

Chrysler 300C '2004–07

5.7 i V8 AWD (340 Hp)
Объем двигателя: 5654 см3
Мощность: 340 л.с.
Крутящий момент : 525 H*m
Расположение цилиндров: V-образный
Количество цилиндров: 8
Кол-во передач (автомат коробка): 5
Привод: полный
Максимальная скорость: 250 км/час

Стоимость б.у. от 600 000 руб./18 347$ до 858 000 руб./26 713$

Как завести машину в мороз
Как завести машину в мороз

Как завести машину в мороз

1. Первое, что нужно сделать, сев в салон автомобиля - включить на 5-10 секунд габаритные огни, чтобы разогреть электролит в аккумуляторе и повысить его отдачу.

2. Перед включением стартера нужно убедиться, что все потребители электроэнергии в автомобиле выключены - это избавит аккумулятор от лишней нагрузки и обеспечит максимально возможный ток для работы стартера. Проверьте, не остались включенными с вечера вентилятор отопителя, обогрев стекла, подогрев сидений и пр., не нажимайте педаль тормоза, чтобы не горели лампы стоп-сигналов.

3. Если автомобиль дизельный, после включения зажигания не забудьте дождаться, пока погаснет индикатор разогрева свечей. Если автомобиль карбюраторный, вытяните кнопку «подсоса» (дроссельной заслонки).

4. Если у автомобиля механическая коробка передач, перед стартом выжмите сцепление - это существенно облегчит работу стартера, который будет избавлен от необходимости вращать первичный вал коробки передач вместе с загустевшим трансмиссионным маслом.

5. Включайте стартер на 4-5 секунд. Меньшего промежутка времени может оказаться недостаточно для того, чтобы коленвал «раскрутился» в загустевшем моторном масле, а повторный пуск потребует неоправданно лишней энергии от аккумулятора, отдача которого на морозе и без того значительно снижается. Имейте в виду, что значительная доля потребляемой при пуске электроэнергии приходится именно на момент начала вращения стартера. Работа стартера более 5 секунд подряд нежелательна также с точки зрения сохранения заряда батареи для последующих попыток.

6. Перед второй (и последующими) включениями стартера делайте перерыв порядка 10 секунд. За это время аккумулятор частично восстановит заряд, израсходованный на предыдущую попытку.

7. Когда двигатель начнет работать, не отпускайте сразу педаль сцепления - пусть двигатель наберет устойчивые обороты. И отпускайте педаль плавно, иначе двигатель может заглохнуть.

8. Если мотор не запустился после третьей-четвертой попытки, не пытайтесь повторять их до полной «смерти» аккумулятора. Очевидно, в вашем автомобиле есть какая-то неисправность, которая была незаметна в более теплую погоду, но которую усугубил мороз.

9. Если автомобиль зимой эксплуатируется в основном в коротких городских поездках, будет нелишним примерно раз месяц подзаряжать его аккумуляторную батарею от стационарного источника. Дело в том, что при медленной езде в пробках и тянучках генератор не справляется одновременно с обеспечением током всех потребителей (свет, дворники, отопитель, обогрев стекол и сидений) и подзарядкой аккумулятора. Накапливающийся в течение недель недозаряд в конце концов приводит к проблемам с утренним стартом.

10. Имейте в виду - современные европейские автомобили рассчитаны на эксплуатацию при температуре как минимум до - 20 градусов, и если при более высокой температуре мотор пускается с проблемами, нужно нанести визит на СТО. Не дожидаясь, пока двигатель откажет совсем.

•Тюнинг и форсировка двигателя
•Тюнинг и форсировка двигателя

•Тюнинг и форсировка двигателя

Автолюбители, которые занимаются тюнингом двигателя разделяются на два лагеря. Первым, нужно всего лишь немного поднять мощность мотора своей машины, т.к. их не устраивает разгонная динамика или другие характеристики мотора. Обычно они делают тюнинг двигателя своими руками, ведь перечень работ по форсировке минимален. Он включает в себя либо перепрошивку блока управления ЭБУ, либо замену некоторых деталей мотора на спортивные. В итоге, мощность двигателя повышается на 10-15 процентов.

Другие автолюбители, подходят к тюнингу мотора очень основательно. Они заменяют все детали двигателя на спортивные, устанавливают турбины и растачивают двигатель. Мощность такого двигателя зависит от потенциала мотора-донора или от кошелька владельца. Ведь бывает, что мощность мотора поднимают на 100 "лошадок", а бывает и до 1000 лошадиных сил. Тут уж все зависит от задач, для которых предпринимался тюнинг двигателя.

•Что такое спортивный распредвал?

Спортивный распредвал дает существенное увеличение мощности двигателя для любого автомобиля. Он завоевал огромную популярность, как среди обычных автолюбителей, так и среди автоспортсменов. Спортивный распредвал может поднять мощность двигателя, как в области верхних оборотов двигателя, так и в области нижних.

•Что такое кованые поршни? Их особенности

При тюнинге двигателя желательно применять кованые поршни, если вы надеетесь на хороший результат. Кованые поршни предназначены для гоночных или спортивных автомобилей. Если вы используете автомобиль для перемещения из одной точки в другую, то кованными поршни будут для вас лишней и дорогой деталью при тюнинге двигателя.

Воздушный фильтр нулевого сопротивления. Для чего нужен "нулевик"?

Воздушный фильтр нулевого сопротивления применяется при грамотном тюниге двигателя любого автомобиля. Они получили массовое распространение благодаря своей доступности и низкой стоимости. Еще одно неоспоримое преимущество "нулевиков" - это красивый внешний вид.

Увеличение объема двигателя - расточка блока цилиндров
При серьезном тюнинге двигателя широко распространен метод увеличения мощности - расточка блока цилиндров. Данный метод положительно влияет на увеличение, как мощностных характеристик двигателя, так и моментных. Он получил свое распространение из-за своей простоты, а следовательно и дешевизны проводимых работ.

•Модернизация электроники двигателя

Тюнинг двигателя обычно не ограничивается лишь заменой стандартных деталей на спортивные или гоночные. Обычно при тюнинге двигателя также модернизируют его электронное управление. Ведь толку от замены деталей двигателя может быть мало, если не позаботится о моторной электронике, ограничивающей потенциал двигателя.

•Шатуны для форсированного двигателя

Шатуны для спортивного мотора должны быть прямолинейны. Любое их отклонение от прям мощность форсированного двигателя. Причина в том, что при кривизне тюнинг-шатуна, он будет препятствовать движению поршней двигателя, тем самым увеличивая трение.

•Разрезная шестерня распредвала

Опытные автолюбители знают, что при оптимальном соотношении фаз газораспределения, достигается максимальная мощность двигателя. Чтобы добиться нужного положения распредвала относительно коленвала применяется разрезная шестерня распредвала, которая "перекочевала" на гражданские автомобили из автоспорта.

•Перепускной клапан турбины

Перепускной клапан предназначен для понижения давления в турбине, при избытке поступающих выхлопных газов. Лишние выхлопные газы, он отводит обратно в выхлопную систему. Наиболее популярным среди автолюбителей стал перепускной клапан фирмы HKS.

Системы зажигания для спортивного автомобиля
Существует большое количество способов модернизации системы зажигания для спортивного автомобиля. Некоторые, заменяют штатную контактную систему зажигания на бесконтактную или на микропроцессорную. Другие автолюбители, устанавливают дополнительные блоки управления Октан, Искра или Пульсар.

Механический наддув.
Механический наддув. (5 фото)

Механический наддув.

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.Существует два вида механических нагнетателей: объемные и центробежные.
Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.
Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.
Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Porsche 911 GT3 (997), 2010.
Porsche 911 GT3 (997), 2010. (8 фото)

Porsche 911 GT3 (997), 2010.

Цена: 4.600.000 руб. = 136.288 $. Пробег: 27524 км.
Двигатель - бензиновый B6 (3797 см³)
Мощность - 450 л.с.
Крутящий момент - 430 Н/м 6750 об/мин.
Коробка передач - механическая (6 ступеней)
Привод - задний
Разгон до сотни - 4,0 секунды
Максимальная скорость - 310 км/ч
Масса автомобиля - 1404 кг

Механическая коробка передач
Механическая коробка передач (5 фото)

Механическая коробка передач

Механическая коробка передач (МКПП) представляет собой набор шестерен, которые входят в зацепление в различных сочетаниях, образуя несколько передач или ступеней с различными передаточными числами. Чем больше число передач, тем лучше автомобиль «приспосабливается» к различным условиям движения.

Преимущества:

Наименьшая по сравнению с другими типами КПП стоимость и масса;
Высокие КПД, топливная экономичность и динамика разгона;
Простота и отработанность конструкции, а следовательно - высокая надежность;
Не требуют дорогостоящих расходных материалов, просты в обслуживании;
Благодаря жесткой связи двигателя с ведущими колесами, водитель может более эффективно использовать автомобиль при передвижении в гололедицу, по грязи и бездорожью;
МКПП допускает полное разобщение двигателя и трансмиссии, поэтому такой автомобиль легко пускается «с толкача» и может буксироваться на любое расстояние с любой скоростью.

Недостатки:

Утомляющее водителя переключение передач, особенно в городском цикле и движении в пробках, необходимость навыка для правильного выбора передачи и плавного переключения передач без рывков;
Ступенчатое изменение передаточного отношения;
Малый ресурс сцепления.
Ступенчатые механические коробки передач выполняются по двум схемам: трехвальные и двухвальные. Трехвальная коробка передач устанавливается, как правило, на заднеприводные автомобили. Двухвальная механическая коробка передач применяется на переднеприводных и заднемоторных легковых автомобилях. Устройство и принцип работы этих коробок передач имеют различия, поэтому они рассмотрены отдельно.

• Трехвальная коробка передач

Как следует из названия, такая коробка имеет три вала: ведущий, промежуточный и ведомый.
Ведущий вал соединяется со сцеплением. На валу имеются шлицы для ведомого диска сцепления. Далее крутящий момент передается через шестерню, находящуюся на валу в жестком зацеплении, на промежуточный вал.
Промежуточный вал расположен параллельно ведущему валу. На валу располагается блок шестерен, находящийся с ним в жестком зацеплении.
Ведомый вал расположен на одной оси с ведущим. Такое расположение осуществляется за счет подшипника на ведущем валу, в который входит ведомый вал. Жёсткой связи они не имеют и вращаются независимо друг от друга. Блок шестерен ведомого вала не имеет закрепления с валом и свободно вращается на нем. Между шестернями ведомого вала располагаются муфты синхронизаторов. Муфты имеют жесткое зацепление с ведомым валом, но могут двигаться по нему в продольном направлении за счет шлицевого соединения. На торцах муфты имеют зубчатые венцы, которые могут входить в соединение с соответствующими зубчатыми венцами шестерен ведомого вала. На современных коробках передач синхронизаторы устанавливаются на всех передачах (кроме заднего хода).
Шестерня ведущего вала, блок шестерен промежуточного и ведомого вала находятся в постоянном зацеплении. При нейтральном положении рычага переключения крутящий момент от двигателя на ведомый вал не передается, а его шестерни свободно вращаются. При перемещении рычага КПП, соответствующая вилка перемещает муфту синхронизатора, который обеспечивает выравнивание (синхронизацию) угловых скоростей шестерни ведомого вала с угловой скоростью самого вала за счет сил трения. После этого, зубчатый венец муфты заходит в зацепление с зубчатым венцом шестерни и обеспечивается блокировка шестерни на ведомом валу. Ведомый вал передает крутящий момент от двигателя на ведущие колеса с заданным передаточным числом. При соединении синхронизатором первичного и вторичного валов (минуя шестерни) образуется прямая передача. Передаточное число прямой передачи равно единице. На прямой передаче шестерни вращаются вхолостую и не изнашиваются, коробка работает с максимальным КПД. Движение задним ходом обеспечивается за счет промежуточной шестерни заднего хода, устанавливаемой на отдельной оси. Шестерни трехвальной коробки передач обычно (кроме первой передачи и передачи заднего хода) делают косозубыми. Такие шестерни обладают повышенной прочностью, более долговечны и бесшумнее в работе, чем прямозубые.
Посмотреть анимированное изображение.

• Двухвальная коробка передач

Ведущий вал, также как и в трехвальной коробке, обеспечивает соединение со сцеплением. На валу жестко закреплен блок шестерен, а не одна шестерня, как в трехвальной коробке. Промежуточный вал отсутствует. Параллельно ведущему валу расположен ведомый вал с блоком шестерен. Шестерни ведомого вала находятся в постоянном зацеплении с шестернями ведущего вала и свободно вращаются на валу. На ведомом валу жестко закреплена ведущая шестерня главной передачи. Между шестернями ведомого вала установлены муфты синхронизаторов.
Принцип работы аналогичен трехвальной коробке. Однако прямой передачи в двухвальной коробке нет. Каждая передача, кроме заднего хода, создается одной парой шестерен, а не двумя, как в трехвальной коробке. Это повышает КПД двухвальной коробки, но не позволяет добиться большого передаточного числа. Поэтому и применяется она только в легковых автомобилях.

• Как работает синхронизатор

Синхронизатор служит для бесшумного переключения передач путем выравнивания угловых скоростей включаемых элементов. Он состоит из ступицы 1, муфты 2, двух блокировочных колец 3, трех сухарей 4, двух проволочных колец 5. Ступица устанавливается на шлицах вторичного вала и жестко фиксируется. На ступице нарезаны наружные зубья и пазы под сухари. Муфта расположена на зубьях ступицы и в среднем положении удерживается сухарями, выступы которых входят во внутреннюю кольцевую канавку муфты. Сухари прижимаются к муфте упругими кольцами (как вариант, вместо колец могут использоваться подпружиненные шарики). Бронзовые блокировочные кольца имеют наружные зубья со скосами и впадины под сухари; ширина впадин несколько больше ширины сухарей. Кольцо может провернуться относительно ступицы на величину разницы ширины паза кольца и ширины сухаря. Для увеличения сил трения на конической поверхности кольца нарезана резьба и выполнены продольные канавки.
Работает синхронизатор следующим образом. При включении передачи вилка переключения перемещает муфту в направлении шестерни включаемой передачи. При перемещении муфты усилие через сухари передается на одно из блокировочных колец, которое вместе с муфтой перемещается относительно ступицы в сторону включаемой шестерни до соприкосновения с ее конической поверхностью. Вследствие разности угловых скоростей включаемой шестерни и ведомого вала на конических поверхностях возникает сила трения, которая поворачивает блокировочное кольцо до упора его в сухари. При этом зубья блокировочного кольца станут напротив зубьев муфты и дальнейшее перемещение муфты становится невозможным. После выравнивания угловых скоростей шестерни и синхронизатора сила, сместившая блокировочное кольцо, исчезает; под действием усилия водителя оно вернется в первоначальное положение, чему способствуют скосы на зубьях муфты и кольца. После этого муфта свободно проходит между зубьями блокировочного кольца и соединяется с зубьями малого венца включаемой шестерни. При этом гребни сухарей выходят из кольцевой проточки муфты, а сухари утапливаются, преодолевая упругую силу кольцевых пружин. Шестерня жестко соединяется со вторичным валом, передача включается. Весь процесс занимает время порядка милисекунд. С помощью одного синхронизатора можно поочередно включать две передачи в коробке.

• Механизм переключения

Конструкция механизма переключения передач зависит от конструкции автомобиля. В заднеприводных рычаг располагается непосредственно на корпусе коробки передач. В этом случае весь механизм переключения расположен внутри корпуса коробки и рычаг напрямую воздействует на него. Плюсы такой схемы – простота, более чёткое переключение передач, меньший износ в процессе эксплуатации. Недостаток - такой привод непригоден для использования на большей части переднепри

BMW 3 GT
BMW 3 GT (8 фото)

BMW 3 GT

320i AT
Двигатель: бензиновый (1997 см³)
Мощность: 184 л.с.
Крутящий момент: 270 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: задний
Разгон до сотни: 7,9 сек
Максимальная скорость: 229 км/ч
Расход топлива (л/100 км)
Городской цикл: 8.2 л
Загородный цикл: 5.1 л
1 550 000 руб./47 000 $

320i AT xDrive
Двигатель: бензиновый (1997 см³)
Мощность: 184 л.с.
Крутящий момент: 270 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 8,3 сек
Максимальная скорость: 224 км/ч
Расход топлива (л/100 км)
Городской цикл: 8.8 л
Загородный цикл: 5.5 л
1 670 000 руб./50 600 $

328i AT xDrive
Двигатель: бензиновый (1997 см³)
Мощность: 245 л.с.
Крутящий момент: 380 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 6,2 сек
Максимальная скорость: 247 км/ч
Расход топлива (л/100 км)
Городской цикл: 9 л
Загородный цикл: 5.7 л
2 130 000 руб./64 550 $

320d AT xDrive
Двигатель: дизельный (1995 см³)
Мощность: 184 л.с.
Крутящий момент: 380 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 7,9 сек
Максимальная скорость: 225 км/ч
Расход топлива (л/100 км)
Городской цикл: 6.2 л
Загородный цикл: 4.5 л
1 730 000 руб./52 400 $

335i AT xDrive
Двигатель: бензиновый (2979 см³)
Мощность: 306 л.с.
Крутящий момент: 400 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 5,3 сек
Максимальная скорость: 250 км/ч
Расход топлива (л/100 км)
Городской цикл: 11.6 л
Загородный цикл: 6 л
2 380 000 руб./72 100 $

Перлы автосервиса

У нас в автосервисе клиентов просят описать свои неисправности на бумаге, и некоторые перлы механики выписывают в отдельную тетрадочку.

Во время запуска холодного двигателя раздется стук 1,5-2 щелчка в секунду.
Автомобиль не перемещается в пространстве.
Стук задней подвески спереди справа.
Горит транспорант.
Замена прокладки вхлопного коллектора.
Течет тосол из бачка омывателя.
Замена всасывающего реле.
Заикается магнитола.
Потусторонние шумы в двигатели.
Задняя дверь не открывается и не открывается.
Разрыв проводов передних колодок.
Не работает обдув зеркал.
Гудят передние подшипники и входят в дисбаланс.
Не горет стоп сигнал на одно лампо.
Частое возгорание лампочки уровня масла.
Стук в главном тормозном цилиндре.
Плохо включается 1ая детонация двигателя.
Проверить свал развал колес.
Дергается на дороге ( а так нет).
Не работает уровень топлива.
Что-то подтекает по правой стороне двигателя (вид спереди).
Не гаснет символ бензонасоса.
Наладить тормозной огонь.
Тахометр медленно опускается.
Бачок омывателя не соответствует норме.
Проверить работу щеток стеклоочистителя.
Тресчат реле.
Поворотники моргают с ускорением.
Вентилятор работает со звуком скрипа.
Отошел чехол заднего сидения.
Увеличение обьема теплого воздуха для задних пассажиров.
Устранение света в салоне.
Двигатель периодически работает.
Синдром подыхания рулевого механизма.
Машина ковыляет.
Дворники не работают в режиме прикосновения.
Антенна придвижении автомобиля сильно вибрирует, что создает помехи при приеме передач.
На скорости шумят приборы- часы.
На скорости 90-100 км/ч тряска руля, особенно справа.
Заменить выжим сцепления.
Гудит и вибрирует выжим сцепления.
Сцепление- при нажатии шум при отпускании визг.
Часы не работают, если работают то сильно отстают.
Звуковой сигнал делают в четвертый раз, оплачивать не буду.
Устранить нагрев двигателя при езде 4- 5 передачи.
На панели горит неопознанный сигнализатор ( отсутствует в руководстве).
Отрегулировать задние фонари.
Регулировка светосигналов.
Протечка тосола и охлаждающей жидкости.
Ветер в салоне гуляет.
Автомобиль дергался стрелял потом заглох и не заводится.
Звуковой сигнал дает то два тона, то один, нужно оба, а иначе уродам нечем гудеть.
Первая передача в пробках не выключается (в мощных пробках).
В салоне не горит бычий глаз.
Не замыкается правая задняя дверь.
Прыгает стрелка карбюратора.
При езде по лужам не работает тахометр.
Холостой ход- устранить.
Заморозительная вода течет.
Сменить водило.
Ножной насос не работает.
Горит лампочка "переобуть шины".
Техуход n1.
Замена сигнальной дудки.
Протечка тосола в неизвестном месте.
Отрегулировать утреннее зажигание.
Затрудненное включение левой передней двери.
Не работает скоростеметр.
Иногда постукивают пальцы.
Заднее сиденье отклеилось.
Сделать компьютерную диагностику карбюратора.
Зима идет, проверить все!
Горит лампа неисправности масла.
Гранатовый подшипник.
Горит лампа "инспекция двигателя''.
На компьютере горит лампа стоп огней.
В системе зажигания слышен звук замыкания.
У меня между ног что-то звенит.
Чем выше скорость, тем гуще дым из-под торпеды.
Загорелся датчик индикатора масляного фильтра.
При включении обогрева сидений пахнет тухлыми яйцами.
Оптовый техосмотр автомобиля.
Или в бензобаке 35 литров или всплыл бензонасос.
Перемещение деталей передней подвески.
Постоянно горит лампочка перегрева топлива.
Наблюдается биение самовара о кузов.
Поставил задние колодки и при торможении чуствую передние.
На умывальники не подается вода.
Проспринцевать автомобиль.
Горит лампочка жиклера.
Иногда храпит автомобиль.
Хрумкает какая-то коробка на холостых.
Установить местонахождения топливного фильтра.
Реанимация замков дверей.
Отсутствует связь двигателя с колесами.
Газовый педаль бьется под ногами.
При ударе по рулевой колонке двигатель глохнет.
При движении автомобиля доносятся перманентные звуки из-под днища.
Иногда загорается аварийный знак "поддон".
Пора менять выхлопную трубу- конец стал ржаветь и осыпаться.

Прочитать...
Вариаторная коробка передач
Вариаторная коробка передач (3 фото)

Вариаторная коробка передач

Что такое вариатор? Вариатор – это механический узел, предназначенный для передачи усилия двигателя бесступенчато к ведущим колесам. В некотором смысле его можно назвать автоматической коробкой передач, но с совершенно другим принципом передачи крутящего момента.

Классический вариатор - это два раздвижных шкива, соединённых клиновидным ремнем. Вариатор, применяемый в автомобилях, является более сложным устройством, потому что существует необходимость введения «задней скорости» и пониженных передач. В состав вариатора марки CVT (клиноременный вариатор) входят следующие устройства: Раздвижные шкивы – представляют собой две клиновидные «щеки» на одном валу. Приводятся в действие гидроцилиндром, который сжимает диски в зависимости от оборотов, или по управляющему сигналу от блока управления. Клиновидный ремень – изготовлен из двух металлических лент, на которые нанизываются металлические пластинки специальной формы. Элементы располагаются плотно друг к другу, верх пластинки выполнен в виде конуса, а в основании имеются пазы, куда вставляются металлические ленты (для клиноременных вариаторов).

Гидротрансформатор – устройство преобразования и передачи крутящего момента, а также плавного начала движения. Более подробное описание в разделе АКПП. Дифференциал – устройство распределения крутящего момента на ведущие колеса. Планетарный механизм задней передачи – устройство, для обеспечения вращения вторичного вала в обратном порядке. Гидравлический насос – устройство, которое приводится в действие гидротрансформатором и предназначено для создания давления рабочей жидкости. Давлением приводятся в действие исполнительные устройства (гидроцилиндры). Блок управления – микропроцессорное устройство для управления исполнительными устройствами вариатора, в зависимости от сигналов, подаваемых с датчиков (местоположения коленвала, контроля расхода топлива, ABS, ESP и др.). Существуют вариаторы не только с ременным приводом (вариатор CVT), но и цепным. В основном применяется в автомобилях Audi. Крутящий момент передается, так же как и в CVT, только диски сжимают цепь, которая имеет клиновидные оси звеньев. Цепь передает усилие тянущее, а не толкательное как ремень.

Следующий тип вариатора – торовый. В состав такого вариатора входят два клиновидных диска. Один диск является ведущим, второй – ведомым. Между дисками находится ролик, который может перемещаться в вертикальном направлении и вращаться горизонтально вокруг своей оси. Таким образом, ролик может соприкасаться с разными радиусами дисков. При соединении ролика с малым радиусом ведущего диска и с большим ведомого, получается низшая передача. Если наоборот – высшая. Прямая передача – это момент соприкосновения ролика с одинаковыми радиусами дисков. Но такой вариант вариатора не получил большого распространения из-за дороговизны и применения специальных смазывающих материалов. Мы же рассмотрим работу самого популярного у автопроизводителей клиноременного вариатора. При увеличении оборотов двигателя приводится в действие гидротрансформатор, который передает крутящий момент на первичный вал. На первичном валу установлен ведущий шкив и при воздействии на него гидроцилиндра, «щеки» начинают сходиться, что приводит к увеличению трения между ними и клиновидным ремнем. Далее под действием трения усилие передается на ведомый шкив, который соединен с вторичным валом. «Щеки» ведомого шкива в этот момент максимально сведены, то есть получается низшая передача. Далее при развитии оборотов происходит смена диаметров ведущего и ведомого шкивов. Передаточное число увеличивается максимально. Ведомый вал вращает дифференциал, к которому присоединены полуоси ведущих колес.
Задняя передача обеспечивается подсоединением к ведомому валу планетарного механизма, который и обеспечивает реверсивное движение ведомого вала. Обеспечивает управление диаметрами шкивом электронная система управления, она же включает, по средствам актуаторов заднюю и пониженную передачу. Как видим, при использовании вариатора нет резких рывков при переключении, обеспечивается более плавный ход и экономия топлива, так как электроника выбирает оптимальный режим оборотов двигателя и передаточное число шкивов. Но уже и не полихачишь!

Но нарекания водителей, у которых появились автомобили с вариатором, были в отсутствии характерного урчания двигателя при смене передач как в механической коробке передач. Конструкторы нашли выход – применили псевдо ступенчатое переключение передач, применив селектор выбора передач. Так, при трогании с места водитель включает первую передачу движения вперед и нажимает на акселератор, затем после достижения определенных оборотов, двигая селектор, включает вторую передачу и т.д. Достигается такое переключение программированием блока управления на фиксированные передаточные числа шкивов. Но возможен переход в полный автоматический режим, в этом случае электроника все выполнит сама. Для включения пониженной передачи селектор переводиться в определенное положение и блок управления не включает повышенные передачи, независимо от оборотов работы двигателя.

Как починить велосипед.
Как починить велосипед.

Как починить велосипед.

Несмотря на свое простое строение любой велосипед имеет особенность рано или поздно ломаться. Здесь мы рассмотрим самые распространенные поломки и способы их решения.

Для начало хочу предупредить что починить велосипед с помощью подручных средств практически нвозможно, потому лучше иметь с собой все то, что поможет в реанимации вашего железного друга.

Разрыв цепи.
Как правило, разрыв цепи сопровождается деформацией сразу нескольких звеньев. Идеальное решение — заменить поврежденные звенья запасными, так как починить велосипед, сохранив качество езды, иначе не удастся. В крайнем случае, можно просто укоротить цепь. Но перед тем, как починить скоростной велосипед именно таким, наиболее быстрым и простым способом, следует знать, что в результате не все передачи останутся рабочими. Укороченная цепь увеличивает нагрузку на остальные механизмы и скорость передвижения снижается.

ПРОКОЛ КОЛЕСА

Проколы камеры случаются довольно часто — достаточно наехать на острый предмет даже небольшого размера, как колесо сразу же начинает выпускать воздух. Опытные велосипедисты обязательно запасаются специальным клеем и кусочками плотной резины, так как починить велосипед с проколотым колесом, не имея под рукой этих предметов, не получится.

Определить место прокола можно на слух — при надавливании на камеру воздух с шипением выходит из отверстия. Именно сюда и необходимо наклеить резиновую заплатку. Перед тем, как чинить велосипед, необходимо снять колесо. Затем поврежденная камера извлекается, а место прокола обрабатывается специальной, входящей в ремонтный комплект, наждачной бумагой и обезжиривается. Только после этого можно наносить клей. Заклеенная камера высыхает в течение 10 минут и устанавливается на место.
Ремонт тормозной системы

Хорошо отлаженная тормозная система — это гарантия безопасной езды. Но как починить велосипед, в котором тормоза неисправны, ведь ездить на нем рискованно? Тормозная колодка — ключевая деталь всей системы. Если проблема состоит в изношенной тормозной колодке, то ее обязательно нужно заменить на новую.

Заедающий тормозной тросик вообще не является поломкой. Это легкоустранимая неприятность, нужно просто внимательно осмотреть трос, скорее всего, он оказался прижат другими деталями конструкции.

Любителям активного отдыха необходимо знать, как починить скоростной велосипед с поврежденным тормозным тросом. Как правило, для этого достаточно проверить целостность нитей, из которых сплетается трос. Если порвалась одна или две нити, их просто удаляют. Когда разрывается весь трос, его можно завязать узлом, чтобы доехать до ближайшей мастерской.

ПОЛОМКА СИСТЕМЫ ПЕРЕКЛЮЧЕНИЯ ПЕРЕДАЧ(ТРАНСМИССИЯ)

Система переключения передач — довольно сложный механизм. Добиться надежной работы трансмиссии можно только путем хорошей отладки и постоянного ухода за ней. Перед тем, как починить скоростной велосипед, в котором не работает сложная трансмиссия, нужно определить причину поломки.

Часто бывает так, что при езде по грунтовым дорогам загрязняется переключатель передачи или сама «звездочка». Тогда весь ремонт состоит в удалении из механизма посторонних предметов (травы, песка) и хорошей смазке ответственных деталей.

Бывает, что работа трансмиссии затруднена из-за деформации рычага переключателя. Так как починить велосипед с подобной неисправностью можно, не обращаясь в мастерскую, рекомендуется сначала попробовать выпрямить рычаг самостоятельно или сразу заменить его более новым и качественным.

Система экстренного торможения
Система экстренного торможения

Система экстренного торможения

Эффективно использовать тормоза автомобиля в критических ситуациях помогает система экстренного торможении

Существует две группы вспомогательных систем: Brake Assist System (BAS), или система помощи при экстренном торможении, и Система автоматического экстренного торможения. BAS несколько проще: она добавляет усилий, помогая водителю использовать максимальный ресурс тормозной системы. Распространенный случай: водитель не смог продавить педаль тормоза до упора (не рассчитал усилие или под педаль закатилась бутылка), в результате тормоза не сработали на 100. Если бы использовалась система помощи при экстренном торможении, электроника рассчитала бы необходимое усилие и добавила его автоматически.

Система автоматического торможения активируется без участия водителя. Электроника «понимает» в какой момент необходимо вмешаться, получая данные с множества датчиков установленных в автомобиле.

История появления

Система экстренного торможения, помощник торможения и другие механизмы, работающие с тормозами автомобиля, являются дополнениями к антиблокировочной системе. Они начали вводиться с 1970 года, а первопроходцем стал автомобиль компании Chrystler. На сегодняшний день ситуация в корне изменилась.

Если раньше подобные опции были доступны только для дорогостоящих моделей представительского класса, то сейчас такие системы пытаются сделать обязательными для всех классов. Комитет Euro NCAP опубликовал отчет о распространении систем автоматического экстренного торможения (AEB) на современных автомобилях. С 2014 года наличие на машине такого устройства станет обязательным условием получения за краш-тест максимальной оценки в пять звезд. Такое нововведение – первый шаг на пути к автомобильной революции.

Вероятно, со временем подобные системы будут обязательным требованием для выпуска модели в серийное производство. Трудно судить, как скоро это произойдет, но с каждым годом количество автомобилей, оборудованных вспомогательными системами, стремительно увеличивается. Уже сейчас они имеются в наличии на Chevrolet Aveo и Ford Focus, стоимость которых варьируется от 500 тысяч до 1 млн. рублей. Раньше, такое могли себе позволить только Mercedes и Volvo представительского класса.

Принцип работы

Система помощи при экстренном торможении (BAS) работает как с воздушными, так и с гидравлическими тормозными системами. Для распознавания ситуации используются измерительные приборы, которые устанавливаются по всему автомобилю:

- датчик частоты вращения колес;

- датчик скорости перемещения штока вакуумного усилителя (прибор, который фиксирует, с какой силой нажали на педаль тормоза);

- датчик давления жидкости в тормозной системе (принцип тот же, что и у штока вакуумного усилителя, но этот применяется для гидравлической системы тормозов);

Если говорить о жидкостной системе тормозов, то BAS управляет давлением жидкости. Гидравлическая система устроена таким образом, что тормозной механизм находится под управлением гидравлического привода. Тормозная педаль передает усилие от ноги водителя на тормозной цилиндр, наполненный жидкостью. Благодаря давлению, которое создается с помощью жидкости, поршень движется и заставляет тормозной механизм сжиматься. Система помощи при экстренном торможении управляет давлением жидкости в цилиндрах, тем самым добавляя тормозное усилие, если в этом есть необходимость.

Системы такого типа делятся на группы. Они различаются количеством датчиков, на показании которых основывают свою работу. Самые совершенные из них устанавливаются на BMW и Mercedes-Benz. Такие системы учитывают множество факторов: силу нажатия на педаль тормоза, качество дорожного покрытия, направление движения и контроль расстояния до идущего впереди автомобиля.

Если тормозная система работает с помощью пневматического привода, то давление регулирует сжатый воздух. Он передвигает поршень (шток вакуумного усилителя), тем самым увеличивая тормозное усилие. Система помощи при экстренном торможении регулирует давление воздуха, что позволяет контролировать перемещение поршня.

Система помощи при экстренном торможении работает в паре с системой ABS.

В помощь ABS и BAS устанавливается система экстренного торможения. Ее основное отличие в том, что она сама применяет торможение, если данные, полученные с датчиков, сообщают об опасности. Для работы системы используются радары, которые рассчитывают расстояние до идущего впереди автомобиля. Если данные радара показывают интенсивное сокращение расстояния, то система сама применяет торможение. Реализуется контроль над тормозной системой по принципу BAS – увеличивается давление в тормозных цилиндрах.

Автомобили, оснащенные такой электроникой, признаны эталонами безопасного передвижения. Даже если столкновение произойдет, последствия могут быть менее трагичными, поскольку автоматика позволит максимально снизить скорость. Условия передвижения сегодня вынуждают производителей уделять такое внимание безопасности. Низкий уровень культуры вождения, отсутствие опыта сказывается на дорожной обстановке. С каждым годом на дорогах появляется все больше новичков, неуверенные действия которых могут привести к ДТП. Именно для этой группы водителей особенно актуально использование автомобиля оснащенного системами помощи при экстренном торможении.

В США протестирована система автоматического управления грузовиком
В США протестирована система автоматического управления грузовиком

В США протестирована система автоматического управления грузовиком

Системы автоматического управления автомобилей постепенно переходят от легковых к грузовым машинам. В штате Невада компанией Peloton Tech была продемонстрирована возможность движения двух грузовиков в колонне, при этом второй грузовик имел полуавтоматическое управление.

Во время эксперимента оба автомобиля были оснащены системой от Peloton Tech, при этом первым автомобилем полностью управлял водитель, а во втором автомобиле водитель контролировал движение только рулем. Управляемый автомобиль автоматически поддерживал расстояние 10 метров до впереди идущего автомобиля, полностью повторяя его действия во время разгона и торможения.

Расстояние между автомобилями контролировалось с помощью беспроводного соединения и радара, установленного на обоих транспортных средствах, сообщает ресурс TheVerge. Благодаря наличию данной системы, разработчикам удалось продемонстрировать высокую безопасность движения колонны грузовых автомобилей на дальние расстояние.

Также одним из важных преимуществ наличия данной системы контроля движения является экономия топлива, которая обеспечивается за счет выбора правильного момента разгона и торможения. Во время тестов разработчикам удалось добиться экономии горючего примерно в 7%. Такие показатели смогут обеспечить не только уменьшение затрат на заправку грузовиков, но и снизят количество вредных выбросов в окружающую среду.

Расход топлива и объем двигателя
Расход топлива и объем двигателя

Расход топлива и объем двигателя

Многих автолюбителей волнует вопрос – как связаны расход топлива и объем двигателя. Казалось было логично, что если больше объем двигателя (например – 2,0 или 2,5 литра), то тем и расход больше! А вот не всегда это так, бывает что двигатель объемом в 1,5 литра «кушает» больше чем двигатель объемом в 2,0 литра. Почему так происходит?

Итак, расход топлива и объем двигателя.

В мозге рисуется логичная прямая: чем больше объем – тем больше в этот двигатель поместится топлива, а соответственно и расход будет намного выше. Но почему практика иногда показывает обратную картину? Например, двигатель современного автомобиля с объемом в 2,0 литра имеет расход (на механике около 7-8 литров, взять тот же Skyactiv от Mazda), а вот автомобиль не совсем свежего отечественного производителя с двигателем в 1,5 литра будет иметь расход в 8 – 9 литров. Так где же логика?

Все зависит от множества факторов.

1) Технологичность. Первая причина это технологичность двигателя, автомобили очень быстро эволюционируют, а особенно сильно эволюционируют двигатели, становятся более мощными и более экономичными. Но как такое возможно? Все просто появляются новые технологии, которые позволяют увеличить мощность и уменьшить расход топлива. Простые примеры это 16 клапанов вместо 8 (быстрее впрыск топлива и отвод отработанных газов), или же инжектор вместо карбюратора (инжектор практически никогда не перельет топлива и не зальет свечи в отличие от карбюратора), также появился многоточечный впрыск топлива в цилиндры и т.д. В общем сейчас существует очень много технологий которые на механическом уровне позволяют экономить двигателю топливо, без потери мощности.

2) Прошивки. Не секрет что сейчас, в «инжекторных» автомобилях можно менять программу прошивки блока ЭБУ (мозга двигателя). Автомобиль при помощи таких прошивках может быть очень экономичный! При мне прошивали 2,0 литровый FORD FOCUS, и достигали расхода в 7 литров по городу. НО при таких «экономичных» прошивках страдает мощность двигателя, то есть автомобиль получается «задушенный», с места с «пробуксоном» на нем не тронешься. Правда можно поставить и «мощную» прошивку тут все будет наоборот, расход увеличится, причем многократно, но и увеличится мощность также многократно. Тут нужно выбирать, что для вас нужно.

3) Стиль езды. Тут как говорится, можно экономить – ездить спокойно, а можно топить педаль в пол, соответственно и расход увеличится. От стиля езды расход очень сильно зависит. Например – у моего знакомого на KIA RIO в предыдущем поколении (механика), расход с двигателем 1,4 литра, летом 10 литров, но он выжимает из своего автомобиля все что можно, практически всегда крутит «двигатель»! А у меня с двигателем 1,6 литра и с автоматом расход топлива 9,0 литров на 100 километров (подробнее в статье – Chevrolet Aveo расход топлива). Хотя и двигатель мощнее и автомат.

4) Техническая исправность автомобиля. Очень обширная тема, на расход может влиять очень многое. Если у вас элементарно давно не менялись воздушный и топливный фильтры, давно не чистилась топливная рейка, то расход топлива будет увеличен. Вполне может двигатель 1,6 литра (со старыми фильтрами) расходовать больше чем 2,0 литра (но со свежими фильтрами). Так что следим за фильтрами и меняем их вовремя.

5) Тип трансмиссии. Следующим пунктом в нашей статье – расход топлива и объем двигателя, логично поговорить о типе трансмиссии. Тут думаю все понятно, механика и продвинутые автоматы (вариаторы, коробка DSG или автомат на шесть и более передач), будут расходовать меньше, чем старые автоматы на три – четыре передачи. Таким образом, если автомобиль с двигателем 1,4 литра укомплектован автоматом на 4 передачи, то он будет расходовать больше, чем автомобиль с двигателем 2,0 литра, но с вариатором или автоматом на 6-ть передач.

6) Турбина или не турбина. Если взять два двигателя: – например обычный 1,4 литра и турбированный 1,6 литра. ТО второй 1,6 литра, не только будет намного экономичнее (экономия иногда достигает 20 %), но и намного мощнее и производительнее.

7) Ошибочная экономия. Давайте реально подумаем – почему иногда двигатель 1,4 литра намного прожорливее, чем 1,6 литра или 2,0 литра? Все дело в мощности двигателя. Если взять один и тот же автомобиль, с одинаковой массой, но с разными двигателями (обычные, не турбированные), то получается. Чтобы достигнуть таких же характеристик разгона, двигателю 1,4 литра нужно работать в более высоких оборотах, а соответственно его практически всегда нужно будет раскручивать даже если нужно достигнуть 60 км/ч, иначе ваш автомобиль попросту не будет ехать. Если крутим двигатель больше, то и расход будет больше, это логично. Теперь двигатель 1,6 литра, он намного мощнее своего собрата, чтобы ему достигнуть 60 км/ч ему не нужно больших оборотов, он будет работать в среднем режиме, соответственно и расход топлива зашкаливать не будет.

НА этом все. Не нужно думать, что большие двигатели практически всегда это просто «убийцы» бензина, не всегда это так. Простой пример из своего жизненного опыта – есть два автомобиля Nissan Almera (1.6 литра, автомат) и Nissan Teana (2,5 литра, вариатор), расход у Nissan Almera практически такой же как и у Teana – 12 – 14 литров, а зимой Almera начала расходовать больше, примерно 14 литров, у Teana расход по бортовому компьютеру 13,1! Как то так! Так что нужно думать что покупаете, читайте в интернете, не всегда расход топлива и объем двигателя прямо пропорциональные зависимости.

Советы автомеханика
Советы автомеханика

Советы автомеханика

Помните, что буксировать автомобиль нужно со скоростью не более 50 км/ч.

Если у вас АКПП, то действует правило 50 х 50 – максимальное расстояние буксировки – 50 км при максимальной скорости 50 км/ч. Если нужно доставить автомобиль быстрее или на большее расстояние, чем 50 км, то нужно воспользоваться услугами эвакуатора, иначе можно «убить» АКПП.

Если вы никогда не ездили «на галстуке», будьте готовы к тому, что, когда двигатель заглушён, гидроусилитель и усилитель тормозов работать не будут. Поэтому придется жать на педаль тормоза и крутить руль посильнее.

Что такое двойной выжим и перегазовка?
Что такое двойной выжим и перегазовка?

Что такое двойной выжим и перегазовка?

Многие современные водители даже не слышали о таком понятии, как «двойной выжим сцепления» при переключении передач в механических КПП. Тем не менее, знать о таком методе будет полезно всем водителям. Начать рассмотрение этого вопроса нужно с истории автомобилестроения. На старых автомобилях в КПП, вообще отсутствовали какие бы то ни было синхронизаторы.

Синхронизаторы представляют собой устройства, которые уравнивают окружную скорость и не дают заблокироваться шестерне, пока скорости шестерни первичного вала и вторичного не сравняются. Чтобы избежать поломок КПП и продлить срок ее службы применялся так называемый двойным выжимом сцепления (при переключении передач вверх), и перегазовка при переключении вниз. Другими словами, без таких ухищрений переключать передачи КПП без синхронизаторов было практически невозможно (скрежет был бы).

Рассмотрим подробнее эти способы переключения. Итак, двойной выжим, применяется при переключении передач с нижних на верхние. Для примера возьмем переключение с первой передачи на вторую.

Методика двойного выжима сцепления:

- разгоняем на первой передаче (до 3000 об./мин);

- нажимаем педаль сцепления и отпускание педаль газа;

- включаем «нейтраль»;

- полностью отпускаем сцепление;

- делаем небольшую паузу, во время которой и происходит синхронизация (обороты двигателя упадут примерно до 2000) т.е. если бы выехали на второй передаче;

- снова выжимаем педаль сцепления;

- включаем передачу (в данном примере – вторую);

- отпускаем педаль сцепления;

- увеличиваем обороты двигателя, нажимая педаль газа.

По такому же алгоритму переключаются со второй скорости на третью и т.д.

Перегазовка:

Теперь о перегазовке. Применяют ее при переключении с верхних передач на нижние. Для примера рассмотрим переключение со второй передачи на первую.

- отпускаем педаль газа, и тормозим двигателем на второй передаче. При необходимости притормаживаем, нажимая педаль тормоза;

- выжимаем педаль сцепления и полностью отпускаем педаль газа;

- включаем «нейтраль»;

- полностью отпускаем педаль сцепления;

- немного добавляем оборотов двигателю, нажимая на педаль газа, в этот момент происходит синхронизация (поднимаются обороты двигателя, если бы вы ехали на первой передаче);

- полностью выжимаем педаль сцепления;

- включаем первую передачу;

- отпускаем педаль сцепления;

- двигаемся на первой передаче.

Главные моменты здесь – соблюдение паузы или перегазовки, при включенной нейтральной передаче. Основная сложность заключается в правильном выборе продолжительности паузы и правильной перегазовке, но с опытом все оказывается намного проще, чем, кажется в начале. С появлением навыка все будет происходить, как говорится «на автомате».

Конечно, современные КПП, оснащенные синхронизаторами (которые как раз и призваны избавить водителей от всех этих «двойных выжимов»), не требуют применения вышеописанных методов переключения передач, тем не менее, если вы их освоите, то сможете заметно продлить жизнь КПП. Во всяком случае, такой навык лишним не будет, особенно при переключен с верхних передач вниз. Хочу отметить, что перегазовка вниз поможет продлить жизнь синхронизаторам (уменьшится на них нагрузка), а так же если машина не тянет в горку, поможет без потерь тяги переключиться, вниз увеличив крутящий момент.

Назначение систем регулирования фаз
Назначение систем регулирования фаз (9 фото)

Назначение систем регулирования фаз

Эффективность работы ДВС главным образом определяется организацией процесса газообмена, то есть качественным и своевременным наполнением и очисткой цилиндров. Эта задача возлагается на газораспределительный механизм и зависит от фаз газораспределения – моментов и продолжительности открытого состояния впускных и выпускных клапанов. Если клапаны открыты непродолжительное время, фазы называют «узкими». Чем дольше открыты клапаны – тем фазы «шире».

При низких оборотах коленвала объемы и скорость движения горючей смеси и отработанных газов невелики, поэтому фазы должны быть узкими, а перекрытие (время одновременного открытия впускных и выпускных клапанов – минимальным. В этом случае свежая смесь не вытесняется в выпускной коллектор через открытый выпускной клапан и, соответственно, отработанные газы не попадают во впускной. Если же «расширить» фазы на низких оборотах, отработанные газы смешаются с рабочей смесью, снизив тем самым ее качество и вызвав падение мощности и неустойчивую работу двигателя.

С ростом оборотов пропорционально увеличиваются объемы и скорость движения перекачиваемой смеси и отработанных газов в единицу времени, поэтому необходимы «широкие» фазы и большее время перекрытия для лучшей продувки цилиндров. Продувка – вытеснение выхлопных газов из цилиндра движущейся с большой скоростью топливовоздушной смесью.

Ширина фаз определяется формой кулачков распределительного вала. Чем больше высота кулачка – тем выше высота подъема клапана. Чем «тупее» его конец – тем больше время максимального подъема клапана. Таким образом, подбирая форму кулачков, конструкторы могут настроить двигатель на работу только в определенном диапазоне оборотов. При проектировании обычного дорожного автомобиля разрабатывается усредненный распредвал для компромиссного баланса между мощностью и экономичностью. При отклонении от этого диапазона, как в сторону уменьшения, так и в сторону увеличения, эффективность ДВС будет снижаться. Например, «узкофазный» мотор не позволит развить высокую мощность, а «широкофазный» будет неустойчиво работать на малых оборотах, что вынудит увеличивать частоту оборотов холостого хода. Следовательно, идеальным решением было бы изменять ширину фаз в зависимости от оборотов двигателя. Так появились системы регулирования фаз газораспределения.

Для технической реализации идеи регулирования фаз было создано множество конструкций. Для их описания потребуется не одна страница. Поэтому ознакомимся с устройством только нескольких - как простых, проверенных временем систем, так и самых современных.

Поворот распредвала

Одним из способов регулирования фаз газораспределения является изменение положения распределительного вала относительно его первоначального положения в зависимости от режимов работы двигателя. Для примера рассмотрим систему Variable Valve Timing (VVT), применяемую на автомобилях Фольксваген. Она предназначается для оптимизации фаз при работе двигателя на режимах холостого хода, максимальной мощности и максимального крутящего момента.

В систему VVT входят следующие компоненты:

• Две гидроуправляемые муфты (другое название - фазовращатели), установленные на впускном и выпускном распределительных валах. Обе муфты подключены через корпус механизма газораспределения к системе смазки двигателя. Муфты состоят из встроенного в звездочку вала наружного корпуса и неподвижно соединенного с валом ротора.Корпус и ротор могут смещаться относительно друг друга
• Корпус механизма газораспределения, установленный на головке блока цилиндров двигателя. Внутри корпуса проходят каналы для подвода и отвода масла к обеим муфтам поворота распределительных валов.
• Два электрогидравлических распределителя. Эти распределители установлены на корпусе механизма газораспределения. Они служат для регулирования подвода масла из системы смазки двигателя к обоим фазовращателям.

Управление системой VVT осуществляется блоком управления двигателя. Получая данные с датчиков о частоте вращения коленвала, нагрузке двигателя, температуре охлаждающей жидкости, а также о мгновенном положении коленчатого и распределительных валов, ЭБУ выдает сигнал на электрогидравлические распределители. Распределители открывают соответствующие каналы подвода масла, расположенные в корпусе механизма газораспределения. Масло из системы смазки двигателя поступает в гидроуправляемые муфты, которые поворачивают распределительные валы.

На режиме холостого хода впускной вал поворачивается таким образом, чтобы обеспечить более позднее открытие и соответственно более позднее закрытие впускных клапанов, а выпускной вал поворачивается так, что выпускной клапан закрывается задолго до прихода поршня в ВМТ. В результате количество отработанных газов в смеси снижается до минимума, что благоприятствует стабилизации сгорания в цилиндрах двигателя и повышению равномерности его работы на данном режиме.

Для достижения максимальной мощности при высокой частоте вращения вала двигателя производится задержка открытия выпускных клапанов. Благодаря этому увеличивается продолжительность давления газов на поршень на такте рабочего хода. Впускной клапан открывается после ВМТ и закрывается относительно поздно после НМТ. При этом динамические процессы во впускной системе используются для получения эффекта дозарядки цилиндров и соответствующего увеличения мощности двигателя.

Для получения максимального крутящего момента необходимо обеспечить возможно больший коэффициент наполнения цилиндров. Для этого необходимо раньше открывать и соответственно закрывать впускные клапаны, чтобы не допустить обратный выброс смеси из цилиндров во впускной трубопровод. При этом выпускные клапаны закрываются с небольшим опережением до ВМТ.

Подобные системы устанавливают в своих двигателях Renault (VCP), BMW (VANOS/Double VANOS), Toyota (VVT-i), Honda (VTC). Некоторые из них используют фазовращатели только на впускном распредвалу, некоторые, как и VVT – на обоих. Недостатком подобных систем является то, что они способны только сдвигать фазы в ту или другую сторону, но не могут «сужать» или «расширять» их.

Переключение фаз

Такими возможностями обладает, например, Variable Valve Timing and Lift Electronic Control (VTEC), созданная инженерами Honda. Она способна расширять фазы на высоких оборотах путем изменения высоты подъема клапана. Со времени своего создания система претерпела несколько модернизаций. Здесь рассмотрим ее третью версию – систему DOHC i-VTEC. Она представляет собой симбиоз системы VTEC с системой VTC (Variable Timing Control). Именно наличие VTC добавило в обозначение системы букву «i».

Основой VTEC любого поколения является использование трех кулачков на каждую пару клапанов. Коромысел, соответственно, тоже три. Два крайних коромысла расположены непосредственно над клапанами, третье – между ними. Два крайних кулачка низкопрофильные и предназначены для обеспечения оптимальной работы на низких и средних оборотах. Усилие от среднего высокопрофильного кулачка передается на клапана только на высоких оборотах.

Как это происходит? Примерно до 5500 об/мин газораспределение обеспечивается крайними кулачками через свои коромысла. Среднее коромысло хоть и приводится в действие кулачком, но на клапана никакого воздействия не оказывает – система VTEC отключена. При дальнейшем увеличении частоты вращения включается система VTEC. Блок управления отдает команду и управляемый давлением масла штифт, сдвигаясь, замыкает между собой все три коромысла. Таким образом, они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров. Система VTEC устанавливается и на впускной, и на выпускной распредвалы.

Для тех, кто не изучал английский
At low engine speeds - При низких оборотах двигателя
At higher engine speeds - При высок

Во Франции создадут автомобиль на сжатом воздухе
Во Франции создадут автомобиль на сжатом воздухе

Во Франции создадут автомобиль на сжатом воздухе

Французская компания Peugeot объявила о намерении создать гибридный автомобиль, который в одном из своих циклов работы будет приводиться в движение сжатым воздухом.

Согласно сообщению компании, новая технология получила название Hybrid Air; в перспективе она позволит добиться потребления обычного топлива автомобилем на уровне двух литров на сто километров. Системы Hybrid Air планируется начать устанавливать на машины B-класса с 2016 года.

Автомобили с технологией Hybrid Air будут оснащаться обычным трехцилиндровым двигателем внутреннего сгорания, гидравлическим двигателем-насосом, автоматической трансмиссией и системой хранения и подачи сжатого воздуха. В зависимости от стиля вождения и скоростей движения автоматически будет выбираться один из режимов: на сжатом воздухе, на бензине и совместный.

В первом режиме предполагается полное выключение двигателя внутреннего сгорания. При таком режиме движения сжатый воздух будет подаваться из системы хранения в гидравлический двигатель, который затем и будет передавать вращение на колеса. При израсходовании запаса сжатого воздуха будет включаться двигатель внутреннего сгорания для его восполнения. Кроме того, запас сжатого воздуха сможет восполняться гидравлическим двигателем при торможении.

В режиме езды на сжатом воздухе количество вредных выбросов в атмосферу будет околонулевым (полностью нулевым при выключенном двигателей внутреннего сгорания). Первый режим будет задействоваться при скорости движения менее 70 километров в час. Второй режим подразумевает только работу двигателя внутреннего сгорания. Он будет задействоваться только при интенсивном ускорении или при езде за городом на постоянной скорости более 70 километров в час.

В комбинированном режиме гидравлический двигатель и двигатель внутреннего сгорания будут работать одновременно, обеспечивая одновременно существенную экономию топлива и хорошее ускорение. Такой режим, по данным Peugeot, будет задействоваться при езде по городу в режиме «стоп-старт». Как ожидается, 80 процентов времени езды по городу автомобиль с технологией Hybrid Air будет ездить за счет сжатого воздуха.

По предварительным расчетам, Hybrid Air обеспечит 45-процентную топливную экономию и 90-процентное увеличение запаса хода по топливу по сравнению с обычными автомобилями. В целом же машины с технологией Hybrid Air будут существенно тише своих обычных бензиновых собратьев.

Словарь автомобильных сокращений
Словарь автомобильных сокращений

Словарь автомобильных сокращений

4WD (4 Wheel Drive) - автомобиль с четырьмя ведущими колесами. (Обозначаются автомобили, у которых привод всех четырех колес включается вручную водителем).

4WS (4 Wheel Steering) - автомобиль с четырьмя управляемыми колесами

ABC (Active Body Control) - активный контроль кузова. Система активной подвески кузова автомобиля.

ABS (Antiblockier System)- Антиблокировочная система тормозов. Предотвращает блокировку колес при торможении автомобиля, что сохраняет его курсовую устойчивость и управляемость. Сейчас применяется на большинстве современных авто. Hаличие ABS позволяет нетренированному водителю не допускать блокировки колес.

AIRBAG -подушка безопасности. (Надувная подушка безопасности, которая при аварии заполняется газом и предохраняет водителя или пассажира от повреждений)

AMT (Automated Manual Transmission) - автоматизированная механическая трансмиссия (Механическая коробка передач с автоматическим переключением передач с помощью гидравлических или электрических исполнительных механизмов с автоматическим управлением сцеплением)

ARC - активный контроль крена. (Система, уменьшающая крен кузова автомобиля на поворотах. Заменяет стабилизаторы поперечной устойчивости. Изменяет жесткость пневматических или гидропневматических упругих элементов. Управление осуществляется от компьютера, получающего сигналы от датчиков поворота руля, боковых ускорений и др.)

AWD (All Wheel Drive) - автомобиль со всеми ведущими колесами. ( Так обозначаются полноприводные автомобили, которые имеют либо постоянный привод на все колеса, либо, подключаемый автоматически).

BA (Brake Assist) EBA (Electronic Brake Assist) - система помощи водителю при экстренном торможении. (Электронная система, которая реагирует на резкое нажатие тормозной педали водителем и обеспечивает более эффективное торможение в экстренных ситуациях).

BBW (Brake By Wire) - -«торможение по проводам». (Тормозная система, у которой нет механической связи между педалью тормоза и исполнительными механизмами. Тормозная педаль оборудована датчиками, а управляет процессом торможения компьютер).

Bifuel - автомобиль приспособленный для работы на двух видах топлива (Обычно газ и бензин)

Biturbo - турбонаддув с двумя турбонагнетателями

CAN bus - мультиплексная линия (Высокоскоростная линия передачи данных)

CBC (Cornering Brake Control) - электронная система перераспределения тормозных сил по бортам автомобиля.

CCB (Ceramic Composite Brake) - керамический композитный тормоз

CIDI (Compression Ignition Direct Injection) - дизельный двигатель с непосредственным впрыском

COMMON-RAIL - система питания дизеля с «общей рейкой». (Система питания дизелей, в которой насос высокого давления подает топливо в общий аккумулятор - рейку, а подача топлива в цилиндры двигателя осуществляется с помощью форсунок с электронным управлением. Система работает при высоких давлениях, более 100 Мпа, и обеспечивает лучшие показатели мощности, топливной экономичности и меньщую шумность работы дизеля).

CTPS - контактный датчик давления в шине. (Датчик, устанавливаемый в пневматической шине, сигнал от которого, используется для информирования водителя о давлении в каждой, конкретной шине автомобиля).

CVT (Continuously Variable Transmission) - -бесступенчатая трансмиссия с вариатором. (В автоматических коробках передач применяются клиноременные вариаторы с раздвигающимися шкивами и тороидные).

DCG (Direct Shift Gearbox) - коробка передач непосредственного переключения (Автоматическая коробка передач с параллельными ведомыми валами, в которой переключение передач происходит без разрыва мощности. Разработана Audi и серийно применяется на автомобилях фирмы)

DOHC (Double Overhead Camshaft) - ГРМ с двумя валами в головке цилиндров. (Привод таких газораспределительных механизмов осуществляется от коленчатого вала двигателя с помощью цепной или ременной передачи).

DSC (Dynamic Stability Control) - система динамического контроля устойчивости. (Система с электронным управлением, предотвращает занос и опрокидывание автомобиля, путем изменения тяги на отдельных колесах или применением торможения отдельных колес).

EAS (Electric Assist Steering) - электрический усилитель рулевого управления. (В электрических усилителях рулевого управления используются бесщеточные электродвигатели, получающие управляющие электрические сигналы от компьютера системы рулевого управления).

EBD (Electronic Brake Distribution) - В немецком варианте - EBV (Elektronishe Bremskraftverteilung). Электронная система распределения тормозных сил. Обеспечивает наиболее оптимальное тормозное усилие на осях, изменяя его в зависимости от конкретных дорожных условий (скорость, характер покрытия, загрузка автомобиля и т.п.). Главным образом, для предотвращения блокировки колес задней оси. Эффект особенно заметен на автомобилях с задним приводом. Основное назначение данного узла - распределение тормозных сил в момент начала торможения автомобиля, когда, согласно законам физики, под действием сил инерции происходит частичное перераспределение нагрузки между колесами передней и задней оси.

ECM (Electronic Control Module) - электронный контрольный модуль (Электронный блок управления двигателем, компьютер управления)

EDC (Electronic Damping Control) - электронный контроль демпфирования (Амортизаторы с постоянным электронным регулированием)
ECS - Электронная система управления жёсткостью амортизаторов.

ECU (Electronic Control Unit) - блок электронного управления работой двигателя.

EDC (Electronic Damper Control) - электронная система регулирования жесткости амортизаторов. Иначе ее можно назвать системой, заботящейся о комфорте. "Электроника" сопоставляет параметры загрузки, скорости автомобиля и оценивает состояние дорожного полотна. При движении по хорошим трассам EDC "приказывает" амортизаторам стать мягче, а при поворотах на высокой скорости и проезде волнообразных участков добавляет им жесткости и обеспечивает максимальное сцепление с дорогой.

EDIS (Electronic Distributorless Ignition System) - электронная бесконтактная система зажигания (без прерывателя - распределителя).

EDL (Electronic Differential Lock) - cистема электронной блокировки дифференциала.

EGR - система рециркуляции отработавших газов. (Система с электронным управлением, в которой с целью снижения вредных выбросов в атмосферу, часть выхлопных газов, на определенных режимах работы двигателя, подается обратно в цилиндры ДВС).

EHB (Electro Hydraulic Brake) - электрогидравлический тормоз. (Тормозная система, в которой гидравлическая система выполняет силовые функции, а управление торможением осуществляется с помощью электрических сигналов).

EPB (Electronic Parking Brake) - Стояночный тормоз с электронным управлением
EON (Enhanced Other Network) - встроенная навигационная система. В СНГ пока не работает, однако в Европе преимущество EON уже оценено по достоинству. Информация о пробках на дорогах, строительных работах, маршрутах объезда со спутника поступает в бортовой компьютер вашего автомобиля. Электронный мозг машины тут же дает водителю подсказку, какой дорогой пользоваться, а с какой лучше свернуть.

ESP (Electronic Stability Programm) - Она же ATTS, ASMS (Automatisches Stabilitats Management System), DSTC, DSC (Dynamic Stability Control), FDR (Fahrdynamik-Regelung), VDC, VSC (Vehicle Stability Control), VSA (Vehicle Stability Assist) - противозаносная система (ПЗС).

ETC (Electronic Throttle Control) - дроссельная заслонка с электронным контролем (Дроссельная заслонка, которая не имеет механической связи с педалью акселератора. Обычно управляется с помощью электродвигателя и имеет датчики положения)

ETS - электронный контроль сцепления с дорогой. (Противобуксовочная система - ПБС- с электронным управлением).

FCEV (Fuel Sell

Словарь автомобильных сокращений.
Словарь автомобильных сокращений.

Словарь автомобильных сокращений.

4WD (4 Wheel Drive) - автомобиль с четырьмя ведущими колесами. (Обозначаются автомобили, у которых привод всех четырех колес включается вручную водителем).

4WS (4 Wheel Steering) - автомобиль с четырьмя управляемыми колесами

ABC (Active Body Control) - активный контроль кузова. Система активной подвески кузова автомобиля.

ABS (Antiblockier System)- Антиблокировочная система тормозов. Предотвращает блокировку колес при торможении автомобиля, что сохраняет его курсовую устойчивость и управляемость. Сейчас применяется на большинстве современных авто. Hаличие ABS позволяет нетренированному водителю не допускать блокировки колес.

AIRBAG -подушка безопасности. (Надувная подушка безопасности, которая при аварии заполняется газом и предохраняет водителя или пассажира от повреждений)

AMT (Automated Manual Transmission) - автоматизированная механическая трансмиссия (Механическая коробка передач с автоматическим переключением передач с помощью гидравлических или электрических исполнительных механизмов с автоматическим управлением сцеплением)

ARC - активный контроль крена. (Система, уменьшающая крен кузова автомобиля на поворотах. Заменяет стабилизаторы поперечной устойчивости. Изменяет жесткость пневматических или гидропневматических упругих элементов. Управление осуществляется от компьютера, получающего сигналы от датчиков поворота руля, боковых ускорений и др.)

AWD (All Wheel Drive) - автомобиль со всеми ведущими колесами. ( Так обозначаются полноприводные автомобили, которые имеют либо постоянный привод на все колеса, либо, подключаемый автоматически).

BA (Brake Assist) EBA (Electronic Brake Assist) - система помощи водителю при экстренном торможении. (Электронная система, которая реагирует на резкое нажатие тормозной педали водителем и обеспечивает более эффективное торможение в экстренных ситуациях).

BBW (Brake By Wire) - -«торможение по проводам». (Тормозная система, у которой нет механической связи между педалью тормоза и исполнительными механизмами. Тормозная педаль оборудована датчиками, а управляет процессом торможения компьютер).

Bifuel - автомобиль приспособленный для работы на двух видах топлива (Обычно газ и бензин)

Biturbo - турбонаддув с двумя турбонагнетателями

CAN bus - мультиплексная линия (Высокоскоростная линия передачи данных)

CBC (Cornering Brake Control) - электронная система перераспределения тормозных сил по бортам автомобиля.

CCB (Ceramic Composite Brake) - керамический композитный тормоз

CIDI (Compression Ignition Direct Injection) - дизельный двигатель с непосредственным впрыском

COMMON-RAIL - система питания дизеля с «общей рейкой». (Система питания дизелей, в которой насос высокого давления подает топливо в общий аккумулятор - рейку, а подача топлива в цилиндры двигателя осуществляется с помощью форсунок с электронным управлением. Система работает при высоких давлениях, более 100 Мпа, и обеспечивает лучшие показатели мощности, топливной экономичности и меньщую шумность работы дизеля).

CTPS - контактный датчик давления в шине. (Датчик, устанавливаемый в пневматической шине, сигнал от которого, используется для информирования водителя о давлении в каждой, конкретной шине автомобиля).

CVT (Continuously Variable Transmission) - -бесступенчатая трансмиссия с вариатором. (В автоматических коробках передач применяются клиноременные вариаторы с раздвигающимися шкивами и тороидные).

DCG (Direct Shift Gearbox) - коробка передач непосредственного переключения (Автоматическая коробка передач с параллельными ведомыми валами, в которой переключение передач происходит без разрыва мощности. Разработана Audi и серийно применяется на автомобилях фирмы)

DOHC (Double Overhead Camshaft) - ГРМ с двумя валами в головке цилиндров. (Привод таких газораспределительных механизмов осуществляется от коленчатого вала двигателя с помощью цепной или ременной передачи).

DSC (Dynamic Stability Control) - система динамического контроля устойчивости. (Система с электронным управлением, предотвращает занос и опрокидывание автомобиля, путем изменения тяги на отдельных колесах или применением торможения отдельных колес).

EAS (Electric Assist Steering) - электрический усилитель рулевого управления. (В электрических усилителях рулевого управления используются бесщеточные электродвигатели, получающие управляющие электрические сигналы от компьютера системы рулевого управления).

EBD (Electronic Brake Distribution) - В немецком варианте - EBV (Elektronishe Bremskraftverteilung). Электронная система распределения тормозных сил. Обеспечивает наиболее оптимальное тормозное усилие на осях, изменяя его в зависимости от конкретных дорожных условий (скорость, характер покрытия, загрузка автомобиля и т.п.). Главным образом, для предотвращения блокировки колес задней оси. Эффект особенно заметен на автомобилях с задним приводом. Основное назначение данного узла - распределение тормозных сил в момент начала торможения автомобиля, когда, согласно законам физики, под действием сил инерции происходит частичное перераспределение нагрузки между колесами передней и задней оси.

ECM (Electronic Control Module) - электронный контрольный модуль (Электронный блок управления двигателем, компьютер управления)

EDC (Electronic Damping Control) - электронный контроль демпфирования (Амортизаторы с постоянным электронным регулированием)
ECS - Электронная система управления жёсткостью амортизаторов.

ECU (Electronic Control Unit) - блок электронного управления работой двигателя.

EDC (Electronic Damper Control) - электронная система регулирования жесткости амортизаторов. Иначе ее можно назвать системой, заботящейся о комфорте. "Электроника" сопоставляет параметры загрузки, скорости автомобиля и оценивает состояние дорожного полотна. При движении по хорошим трассам EDC "приказывает" амортизаторам стать мягче, а при поворотах на высокой скорости и проезде волнообразных участков добавляет им жесткости и обеспечивает максимальное сцепление с дорогой.

EDIS (Electronic Distributorless Ignition System) - электронная бесконтактная система зажигания (без прерывателя - распределителя).

EDL (Electronic Differential Lock) - cистема электронной блокировки дифференциала.

EGR - система рециркуляции отработавших газов. (Система с электронным управлением, в которой с целью снижения вредных выбросов в атмосферу, часть выхлопных газов, на определенных режимах работы двигателя, подается обратно в цилиндры ДВС).

EHB (Electro Hydraulic Brake) - электрогидравлический тормоз. (Тормозная система, в которой гидравлическая система выполняет силовые функции, а управление торможением осуществляется с помощью электрических сигналов).

EPB (Electronic Parking Brake) - Стояночный тормоз с электронным управлением
EON (Enhanced Other Network) - встроенная навигационная система. В СНГ пока не работает, однако в Европе преимущество EON уже оценено по достоинству. Информация о пробках на дорогах, строительных работах, маршрутах объезда со спутника поступает в бортовой компьютер вашего автомобиля. Электронный мозг машины тут же дает водителю подсказку, какой дорогой пользоваться, а с какой лучше свернуть.

ESP (Electronic Stability Programm) - Она же ATTS, ASMS (Automatisches Stabilitats Management System), DSTC, DSC (Dynamic Stability Control), FDR (Fahrdynamik-Regelung), VDC, VSC (Vehicle Stability Control), VSA (Vehicle Stability Assist) - противозаносная система (ПЗС).

ETC (Electronic Throttle Control) - дроссельная заслонка с электронным контролем (Дроссельная заслонка, которая не имеет механической связи с педалью акселератора. Обычно управляется с помощью электродвигателя и имеет датчики положения)

ETS - электронный контроль сцепления с дорогой. (Противобуксовочная система - ПБС- с электронным управлением).

FCEV (Fuel Sell

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...
Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. Машина начала выпускаться на Белорусском автомобильном заводе. Самосвал способен перевозить 450 тонн груза.
Полная масса загруженного автомобиля составляет 810 тонн.Следует сказать, что до этого рекорд самого большого самосвала в мире держал грузовик грузоподъемностью 400 тонн.
Это был Terex MT 6300AC грузоподъемностью 400 тонн.

Технические характеристики Белаз-75710:

Двигатель: Два дизельных четырехтактных двигателя с непосредственным впрыском топлива
Номинальная мощность при 1900 об. в мин. 2x1715 кВт
Количество цилиндров: 16
Диаметр цилиндра: 165 мм
Ход поршня: 195 мм
Максимальный крутящий момент при 1500 об. в мин. 9313 Нм
Удельный расход топлива, г / кВт час 2x198
Система предпускового подогрева жидкости типа.
Система пуска - пневматический стартер.
Охлаждение диска рабочего колеса системы - гидравлическая муфта с автоматическим управлением.
Тяговый генератор: YJ177A мощность, кВт 1704
Тяговый электродвигатель: 1TB3026 - 0GB03 мощность, кВт 1200
Максимальная скорость 60 км/час
Радиус поворота, 19,8 м.
Габаритный диаметр разворота , 45 м.
Подъем кузова с помощью телескопических цилиндров с двумя ступенями и одной стадией двойного действия.
Время подъема, с 26
Время опускания, с 20
Давление в системе, МПа 26
Грузоподъемность – 450 тонн.

Уровень шума в кабине не превышает 80 дБ.
Местный уровень вибрации составляет не более 126 дБ. Общий уровень вибрации
не более 115 дБ.
Среди дополнительных устройств можно назвать: систему видеонаблюдения, система контроля давления в шинах, климат – контроль в кабине водителя.

BMW 3 GT
BMW 3 GT (8 фото)

BMW 3 GT

320i AT
Двигатель: бензиновый (1997 см³)
Мощность: 184 л.с.
Крутящий момент: 270 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: задний
Разгон до сотни: 7,9 сек
Максимальная скорость: 229 км/ч
Расход топлива (л/100 км)
Городской цикл: 8.2 л
Загородный цикл: 5.1 л

320i AT xDrive
Двигатель: бензиновый (1997 см³)
Мощность: 184 л.с.
Крутящий момент: 270 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 8,3 сек
Максимальная скорость: 224 км/ч
Расход топлива (л/100 км)
Городской цикл: 8.8 л
Загородный цикл: 5.5 л

328i AT xDrive
Двигатель: бензиновый (1997 см³)
Мощность: 245 л.с.
Крутящий момент: 380 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 6,2 сек
Максимальная скорость: 247 км/ч
Расход топлива (л/100 км)
Городской цикл: 9 л
Загородный цикл: 5.7 л

320d AT xDrive
Двигатель: дизельный (1995 см³)
Мощность: 184 л.с.
Крутящий момент: 380 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 7,9 сек
Максимальная скорость: 225 км/ч
Расход топлива (л/100 км)
Городской цикл: 6.2 л
Загородный цикл: 4.5 л

335i AT xDrive
Двигатель: бензиновый (2979 см³)
Мощность: 306 л.с.
Крутящий момент: 400 Нм
Коробка передач: автоматическая (8 ступеней)
Привод: полный
Разгон до сотни: 5,3 сек
Максимальная скорость: 250 км/ч
Расход топлива (л/100 км)
Городской цикл: 11.6 л
Загородный цикл: 6 л

1 550 000 руб..47 000 $ - 2 380 000 руб./72 100 $

328i xDrive
в России от $64,500
в США от $41,450

Кулачковая коробка передач
Кулачковая коробка передач

Кулачковая коробка передач

Если в парной гонке на ускорение друг против друга выйдут обычный автомобиль и гоночный с двигателями одинаковой мощности, победителем, несомненно, станет последний. Ключ к победе – кулачковая коробка передач. Главное достоинство кулачковой коробки – в скорости переключения передач. Если разгоняться на обычном автомобиле, переключая передачи вверх максимально быстро, почти ударом, то смена каждой передачи займет около 0,6 с. Примерно столько уходит на высокоскоростное выключение/включение сцепления. Пилот гоночного автомобиля может сменить передачу втрое быстрее – и сделает это, не выжимая сцепления, и на каждом переключении будет выигрывать более 0,4 с! Это произойдет за счет того, что при каждом переключении у обычного автомобиля падают обороты двигателя и, соответственно, снижается интенсивность разгона. Чтобы выяснить, как устроена высокоскоростная гоночная коробка передач, мы отправились в Удельное, на подмосковную базу команды «Красные крылья», выступающей в ралли и кольцевых гонках.

Особенности гоночной механики

Денис Комаров, технический директор гоночной команды, готовит кулачковую коробку передач к фотосъемке. Он бережно протирает ветошью одну из шестеренок агрегата – огромное прямозубое колесо. Если бы такая шестерня лежала в мастерской сама по себе, можно было бы подумать, что она из коробки большого старого грузовика. Между тем она принадлежит компактному хетчбэку Citroёn С2.

Большой диаметр колеса объясняется двумя факторами. Во-первых, коробка раллийной машины передает от двигателя на колеса солидный крутящий момент. А во-вторых, колесо прямозубое. Достоинство привычных косозубых шестерен, которые применяются в коробках «гражданских» автомобилей, заключается в том, что за счет более длинного зуба и, соответственно, большей поверхности распределения нагрузок они могут передавать тот же крутящий момент при меньших размерах. Кроме того, они работают заметно тише. Но прямозубые колеса применяются в гоночных машинах не случайно: они не создают осевых нагрузок на валах и повышают КПД коробки.
Удивительно, но гоночная коробка передач не сложнее, а даже проще обычной гражданской. Здесь нет никаких синхронизаторов, а вместо большого количества мелких зубцов, которые входят в зацепление при включении передачи на обычной коробке, применяются крупные кулачки – торцевые выступы на шестерне и муфте (обычно их 5–7 штук на колесо). Чтобы передачи включались как можно скорее, кулачки входят в зацепление с большим зазором по ширине. Поэтому при включении передач на раллийной машине можно слышать характерное металлическое клацанье – это кулачки шестерни и муфты столкнулись друг с другом.

Кулачковая коробка требует от пилота большой ловкости – особенно при переключении вниз: для синхронизации оборотов двигателя и трансмиссии необходимо филигранно работать педалью акселератора и прекрасно чувствовать автомобиль. При бережной езде пилот при переходе вниз пользуется сцеплением, в ходе гонки – особенно на машинах с секвентальной кулачковой коробкой – педаль сцепления ему практически не нужна. В том числе поэтому раллисты иначе, чем гражданские водители, выжимают педали. Правая нога у них обычно лежит на педали газа, а левая заведует сцеплением и тормозами. Четко работать акселератором очень важно, ведь без правильно выполненной перегазовки переход на понижающую передачу либо вообще не произойдет, либо будет сопровождаться жестким ударом. Именно поэтому пилоты раллийных машин ехидно улыбаются, когда я интересуюсь, насколько популярна кулачковая коробка среди любителей тюнинга. Конечно, находятся фанаты уличных гонок, которые заменяют серийные коробки кулачковыми. Такая замена улучшает динамику разгона, но требует от водителя постоянной концентрации внимания при переключении вниз, а также наполняет салон шумом от работы прямозубых шестерен. Кулачковая коробка воет примерно так же громко, как гражданская косозубая, когда в ее картере нет масла. Добавим сюда высокую стоимость кулачковых коробок (до $20 000 за агрегат) и невысокий срок службы – и придем к выводу, что установка кулачковой коробки на обычный автомобиль совершенно не оправданна. Конечно, срок службы автомобиля зависит и от субъективных факторов. В жестких гоночных условиях синхронизаторы долго не живут. Так что если за рулем гражданского автомобиля окажется маньяк, кулачковая коробка, вполне возможно, будет служить ему дольше привычной. Тем не менее со временем гоночный агрегат начнет издавать характерный стук, говорящий о том, что скруглившиеся кулачки не обеспечивают надежного зацепления. Такая коробка нуждается в замене износившихся пар. Денис рассказывает, что кулачковую коробку для проверки разбирают после каждой гонки, а некоторые пары в коробке приходится менять через каждые 2–3 этапа гонок. И это нормально!

Вперед-назад: хорошо и плохо

Есть и еще одна причина, почему кулачковые коробки не подходят для обычных дорог. Хотя эти агрегаты нередко оборудуют обычным поисковым механизмом переключения, самые быстрые и популярные у гонщиков коробки – секвентальные. В раллийных машинах пилота сильно трясет, поэтому водить рычаг переключения вперед-назад куда удобнее, чем выбирать передачи, как в обычном автомобиле. К тому же такая кинематика рычага позволяет сэкономить несколько миллисекунд на каждом переключении.

Но ездить с секвентальной коробкой кулачкового типа по дорогам общего пользования – страшная мука. Дело в том, что когда мы попадаем в пробку или под прямым углом поворачиваем с главной дороги на второстепенную, то обычно перескакиваем сразу на несколько передач вниз. Например, с пятой на вторую. При секвентальной же коробке такой трюк не выйдет: придется с перегазовкой последовательно перейти на четвертую, третью и лишь затем – на вторую передачу. Денис показывает, почему так происходит на коробке «ситроена». Когда пилот раллийной машины толкает рычаг этой секвентальной коробки вперед или назад, на определенный угол поворачивается специальная ось с многочисленными кулачками. При этом один из кулачков возвращает вилку переключения передач в нейтральное положение, а другой давит на еще одну вилку, и она вводит в зацепление муфту с шестерней нужной передачи. Чтобы включить, скажем, пятую передачу, надо последовательно несколько раз повернуть ось, которая управляется вилками переключения.

Утешение гражданского гонщика

Выходит, что кулачковая коробка абсолютно неприменима для гражданских автомобилей. Это не совсем так. Британские фирмы – главные производители кулачковых коробок – традиционно имеют много запросов среди любителей тюнинга, желающих приобрести их коробки, а в нашей стране на базе кулачковой коробки даже был разработан современный агрегат для «гражданского» использования, который почти лишен недостатков.

Произошло это так. Компания «Спортмобиль», которая занималась тюнингом и подготовкой для соревнований и без того быстрых автомобилей Mitsubishi Lancer Evolution, освоила установку на этих машинах кулачковой коробки фирмы Gemini. Эффективное использование такого устройства предполагает превосходные навыки водителя. Но поскольку применение кулачковой коробки кардинально изменяет динамические характеристики, инженеры и основатели компании Алексей Чернышев и Павел Рустанович решили адаптировать гоночную коробку для использования обычными водителями при каждодневной езде.

Для решения этой задачи привлекли электронику. За основу взяли компьютер Motec, позволяющий программировать функции автомобиля. К нему написали собственное программное обеспечение, которое в совокупности с разработанным электронным блоком и стало основой его системы, получившей название SGSM (Sequental Gearshift Management). Сотрудники компании «Спортмобиль» смогли связать переключения передач в коробке с работой систем зажигания и впрыска. При переходе вниз мотор в автоматическом режиме совершал перегазовку. С одной стороны, это облегчало жизнь пилоту, а с другой – повышало срок службы кулачко

Езда "накатом" - пережиток прошлого или возможность сэкон...
Езда "накатом" - пережиток прошлого или возможность сэкон...

Езда "накатом" - пережиток прошлого или возможность сэкономить бензин?

Глушить или не глушить? Катиться или ехать? Эти уже совсем не шекспировские вопросы мучают не одну светлую водительскую голову. Хотя, более актуальным этот материал будет для водителей, имеющих автомобили с механической коробкой передач. Поскольку на «автомате» ехать накатом не получится.

Еще со времен детства мне запомнилось выражение «езда накатом». А вот в чем его смысл стало понятно позже, «когда ноги стали доставать до педалей».

Итак, давайте проясним: "езда накатом" – это движение автомобиля на нейтральной скорости.
Зачем это нужно? Тут вариантов несколько. Но, один из наиболее распространенных – это экономия бензина. Мол, если машина катится сама по себе – обороты будут небольшими, и автомобиль не будет потреблять дополнительное топливо. Вроде все понятно.

А теперь давайте разберемся…

С учетом того, что карбюраторных автомобилей становится все меньше и меньше (автопром на месте не стоит), то вряд ли езда накатом поможет вам экономить бензин. В советские и перестроечные времена ездить «накатом» водителей заставляла несовершенная конструкция двигателей старых машин. Сегодня автомобили становятся все более технологически совершенными. Так, даже инжекторные машины при движении на передаче по инерции, бензин потребляют в минимальных количествах – для поддержания холостых оборотов двигателя. Поэтому, куда более эффективно просто отпустить педаль газа, не выключая передачу, в этом случае подача топлива полностью прекращается, и автомобиль двигается по инерции.

Не всегда поможет сэкономить и заглушенный двигатель. Так если вы стоите в пробке меньше 5 минут – глушить двигатель бесполезно, потому как слишком частые запуски мотора приведут только к перерасходу, так как в момент старта потребуется не меньше топлива, чем для 2-3 минутного простоя, к тому же увеличится нагрузка на аккумулятор.

Кроме того, такой стиль езды «накатом» весьма небезопасен. Ведь по-сути, вы можете попасть в неуправляемый занос. А вот интенсивное экстренное торможение будет намного эффективнее если вы тормозите на передаче - меньше тормозной путь.

СОВЕТЫ ПРИ ПАРАЛЛЕЛЬНОЙ ПАРКОВКЕ
СОВЕТЫ ПРИ ПАРАЛЛЕЛЬНОЙ ПАРКОВКЕ

СОВЕТЫ ПРИ ПАРАЛЛЕЛЬНОЙ ПАРКОВКЕ

Если вы хотите припарковаться параллельным способом, вам нужно найти такое место, где между уже припаркованными автомобилями будет расстояние, равное длине вашего автомобиля, плюс еще как минимум 0.8 – 1 м. Порядок действий таков:

- Проезжаем немного вперед и становимся рядом со стоящей впереди машиной, с интервалом около полуметра;
- Немного опускаем зеркала заднего вида, таким образом, чтобы было видно задние колеса вашего автомобиля – они помогут выбрать нужный момент начала поворота;
- Включаем заднюю передачу и начинаем движение с минимальной скоростью;
- В момент, когда заднее колесо вашего автомобиля сравняется с задним бампером переднего автомобиля, поворачиваем руль в сторону обочины, к которой паркуетесь, при этом автомобиль должен стать под углом 30-40 градусов к обочине;
- Как только передний бампер вашей машины поравнялся с задним бампером стоящего впереди автомобиля, поворачиваем руль в сторону, противоположную обочине, заезжая в карман между уже припаркованными авто, при этом необходимо контролировать траекторию движения переднего бампера и расстояние до автомобиля, стоящего сзади;
- Оказавшись между двумя автомобилями, откорректируйте свое положение, двигаясь вперед и назад.

Рассмотрим плюсы и минусы установки газового оборудования на автомо...
Рассмотрим плюсы и минусы установки газового оборудования на автомо...

Рассмотрим плюсы и минусы установки газового оборудования на автомобиль

Рассмотрим плюсы и минусы установки газового оборудования на автомобиль.Постоянно растущие цены на бензин вынуждают многих автолюбителей задуматься о переводе машины на более дешевый газ, но споры по поводу того, насколько это целесообразно не утихают.

Плюсы установки газа на автомобиль:

1. Самое главное достоинство газового топлива – это его низкая цена по сравнению с бензином, а значит, быстрая окупаемость стоимости установленного баллонного оборудования.

2. Высокое октановое число газа (около 105) позволяет избежать детонации при работе двигателя, что снижает нагрузку на другие узлы и механизмы.

3. Остается возможность использования и бензина, и газа, при этом простое переключение осуществляется прямо из салона. Таким образом, топливная аппаратура фактически дублируется, уменьшая риск полной остановки автомобиля в дороге.

4. Благодаря более полному сгоранию газовоздушной смеси на 30-40% практически не образуется нагар на свечах, клапанах и поршнях, продлевается срок эксплуатации двигателя, а это прямая экономия на ремонтных работах.

5. Газовоздушная субстанция не смывает со стенок и деталей двигателя масло и не растворяет его, благодаря чему на 10-15% снижается расход масла.

6. Максимальный пробег на одной полной заправке газом, примерно, вдвое больше, чем на бензине (при условии, что емкость газового баллона не меньше емкости бензинового бака, а так оно, обычно, и бывает).

7. При условии качественной регулировки двигатель работает мягче, без рывков, что значительно удлиняет срок эксплуатации трансмиссии и шин.

8. Газовое топливо намного безвреднее для окружающей среды.

9. Установка газобаллонного оборудования позволяет повысить шансы на защиту автомобиля от угона. Отсоединив коммутатор, можно заблокировать подачу топлива (как газа, так и бензина), правда, только на инжекторных авто.

10. И, наконец, минимальная амортизация самого оборудования – срок эксплуатации резинотехнических деталей составляет более пяти лет.

Минусы газобаллонного оборудования:

1. Самый существенный недостаток установки газового баллона – значительное уменьшение свободного пространства в багажнике. И если в седане можно поместить баллон у стенки багажника (возле заднего сиденья), то универсал или хэтчбек теряет всякие преимущества большого багажника. Можно установить баллон и на место запаски, но тогда придется ездить либо без нее, либо размещать ее в другом месте.

2. Увеличение металлоемкости авто на 30-40 кг.

3. Особенности пуска холодного двигателя на газу – рекомендуется заводить автомобиль на бензине, и только после прогрева переключаться на газ.

4. Увеличение скорости разгона и уменьшение максимальной скорости автомобиля, примерно, на 3-8%.

5. Существенная потеря мощности двигателя. Ее величина зависит от октанового числа бензина, который потребляет мотор. Так, если автомобиль работал на 95-м бензине, при хорошей регулировке газового оборудования теряется около 2-5% мощности, а если на 80-м – то уже до 10-15%.

6. Смещается центр тяжести, что влияет на управляемость автомобиля (особенно на скользкой дороге).

7. Расход газа на 15-30% выше по сравнению с бензином.

8. Появляется необходимость не только проходить плановое техническое обслуживание, но и дважды в год производить проверку и опрессовку газобаллонного оборудования, а так же обслуживать еще одну топливную систему.

9. Газовых автозаправок гораздо меньше, чем бензиновых.

Вот основные достоинства и недостатки установки газового оборудования на бензиновый автомобиль. В остальном все зависит от технических характеристик авто, качества самого оборудования, правильности его регулировок, а также условий эксплуатации.

Что делать, если отказали тормоза?
Что делать, если отказали тормоза?

Что делать, если отказали тормоза?

Мы все много раз видели голливудские сюжеты, когда у автомобиля отказывают тормоза и он на огромной скорости несётся по горному серпантину удивляя нас умением героя виртуозно управлять сбесившимся авто.

Но если честно, то к реальной жизни подобные захватывающие сюжеты не имеют никакого отношения. Хотя, конечно же, подобная неисправность может произойти.

Для начала стоит отметить, что все современные автомобили оснащены раздельными тормозами. Это означает, что передние и задние тормоза не зависят друг от друга. Если выходят из строя задние, передние продолжают исправно работать.

Но если всё-таки такое произошло.

Что необходимо делать в подобной ситуации? Сначала необходимо нажать на педаль тормоза несколько раз, иногда помогает.
Если не помогло, то неплохо бы вспомнить, что на автомобиле есть коробка передач и в этом процессе она может оказать неоценимую услугу.

Чтобы сбросить скорость, надо с помощью коробки передач переходить на пониженную скорость. С четвёртой на третью, а с третьей - на вторую, и так до первой.
Затем хорошо бы вспомнить, что между креслами есть рычаг, который называется ручной тормоз. Вот с его помощью и надо начинать плавно тормозить, поднимая его и отпуская, чтобы избежать заноса.
Правда, очень часто этот самый ручной тормоз находится в таком состоянии, что воспользоваться им бывает сложно.
И тогда для полной остановки необходимо использовать самое радикальное действие. Выключить зажигание и включить первую передачу. Автомобиль, конечно, остановится, но вероятность того, что коробка передач останется в исправном состоянии очень мала. Зато Вы сохраните жизнь и почти целым свой автомобиль.

Желаем, чтобы эти советы Вам не понадобились.

BMW 750i
BMW 750i (7 фото)

BMW 750i

Двигатель
Объём двигателя (см3)4799
Мощность двигателя (л.с.)367
Обороты максимальной мощности, макс. (об/мин)6300
Количество цилиндров-8
Количество клапанов на цилиндр-4
Максимальный крутящий момент (Н•м)490
Обороты максимального крутящего момента, макс. (об/мин)3400
Тип двигателя-Бензиновый
Конфигурация двигателя-V-образный
Тип впуска-Распределенный впрыск

Трансмиссия
Количество ступеней-6
Коробка передач-Автомат
Привод-Задний

Эксплуатационные показатели
Время разгона до 100 км/ч (сек)5
Максимальная скорость (км/ч)250
Расход топлива в городе (л/100 км)16.9
Расход топлива на шоссе (л/100 км)8.3
Объём топливного бака (л)88
Рекомендуемое топливо-АИ-95

Классические модели
Классические модели (5 фото)

Классические модели

1969 Mercury Cougar XR-7

Годы выпуска: 1967-1970
Класс: pony car muscle model
Тип кузова: 2-х дверный хардтоп
Двигатель: V8 7.0 L
Мощность: 335 л.с.
Крутящий момент: 597 Нм
КПП: АКПП-3
Привод: задний
Компоновка: переднемоторная
Масса: 1729 кг.
Тип топлива: бензин
Страна производитель: США
Оригинальная базовая цена: $3 761

ГАЗ 14 "Чайка" '1976–89
ГАЗ 14 "Чайка" '1976–89 (6 фото)

ГАЗ 14 "Чайка" '1976–89

Двигатель 5.5 V8
Мощность 220 л.с.
Крутящий момент 451 Нм
Коробка передач АКПП 3
Разгон 0-100 15 сек.
Макс.скорость 170 км/ч
Привод задний
Количество мест 7
Масса 2605 кг.

Скорость движения автомобиля в пробке зависит не от мощности двигателя
автомобиля, а от скорости самой пробки.
(c) Sj

SuperJur.narod.ru

Прочитать...

Все наверное видели по телеку, что во время различных передач снизу
экрана появляется реклама различных передач и фильмов. Причём реклама
сопровождается звуковым рядом...
Вчера по первому каналу смотрел программу "федеральный судья". Так вот
идёт передача, прокурор рассказывает про оторванную голову у
мотоциклиста и другие страшилки. И в этот момент снизу экрана появляется
реклама фильма про мушкетёров 30 лет спустя, и всё это сопровождается
весёлой песенкой: "пора-Пора-порадуемся".
Очень жизнеутверждающая передача получилась....

Прочитать...

У нас клиентов просят описать свои неисправности на бумаге, и некоторые
перлы механики выписывают в отдельную тетрадочку.

Во время запуска холодного двигателя раздется стук 1,5-2 щелчка в
секунду.
Автомобиль не перемещается в пространстве.
Стук задней подвески спереди справа.
Горит транспорант.
Замена прокладки вхлопного коллектора.
Течет тосол из бачка омывателя.
Замена всасывающего реле.
Заикается магнитола.
Потусторонние шумы в двигатели.
Задняя дверь не открывается и не открывается.
Разрыв проводов передних колодок.
Не работает обдув зеркал.
Гудят передние подшипники и входят в дисбаланс.
Не горет стоп сигнал на одно лампо.
Частое возгорание лампочки уровня масла.
Стук в главном тормозном цилиндре.
Плохо включается 1ая детонация двигателя.
Проверить свал развал колес.
Дергается на дороге ( а так нет).
Не работает уровень топлива.
Что-то подтекает по правой стороне двигателя (вид спереди).
Не гаснет символ бензонасоса.
Наладить тормозной огонь.
Тахометр медленно опускается.
Бачок омывателя не соответствует норме.
Проверить работу щеток стеклоочистителя.
Тресчат реле.
Поворотники моргают с ускорением.
Вентилятор работает со звуком скрипа.
Отошел чехол заднего сидения.
Увеличение обьема теплого воздуха для задних пассажиров.
Устранение света в салоне.
Двигатель периодически работает.
Синдром подыхания рулевого механизма.
Машина ковыляет.
Дворники не работают в режиме прикосновения.
Антенна придвижении автомобиля сильно вибрирует, что создает помехи при
приеме
передач.
На скорости шумят приборы- часы.
На скорости 90-100 км/ч тряска руля, особенно справа.
Заменить выжим сцепления.
Гудит и вибрирует выжим сцепления.
Сцепление- при нажатии шум при отпускании визг.
Часы не работают, если работают то сильно отстают.
Звуковой сигнал делают в четвертый раз, оплачивать не буду.
Устранить нагрев двигателя при езде 4- 5 передачи.
На панели горит неопознанный сигнализатор ( отсутствует в руководстве).
Отрегулировать задние фонари.
Регулировка светосигналов.
Протечка тосола и охлаждающей жидкости.
Ветер в салоне гуляет.
Автомобиль дергался стрелял потом заглох и не заводится.
Звуковой сигнал дает то два тона, то один, нужно оба, а иначе уродам
нечем
гудеть.
Первая передача в пробках не выключается (в мощных пробках).
В салоне не горит бычий глаз.
Не замыкается правая задняя дверь.
Прыгает стрелка карбюратора.
При езде по лужам не работает тахометр.
Холостой ход- устранить.
Заморозительная вода течет.
Сменить водило.
Ножной насос не работает.
Горит лампочка "переобуть шины".
Техуход n1.
Замена сигнальной дудки.
Протечка тосола в неизвестном месте.
Отрегулировать утреннее зажигание.
Затрудненное включение левой передней двери.
Не работает скоростеметр.
Иногда постукивают пальцы.
Заднее сиденье отклеилось.
Сделать компьютерную диагностику карбюратора.
Зима идет, проверить все!
Горит лампа неисправности масла.
Гранатовый подшипник.
Горит лампа "инспекция двигателя'.
На компьютере горит лампа стоп огней.
В системе зажигания слышен звук замыкания.
У меня между ног что-то звенит.
Чем выше скорость, тем гуще дым из-под торпеды.
Загорелся датчик индикатора масляного фильтра.
При включении обогрева сидений пахнет тухлыми яйцами.
Оптовый техосмотр автомобиля.
Или в бензобаке 35 литров или всплыл бензонасос.
Перемещение деталей передней подвески.
Постоянно горит лампочка перегрева топлива.
Наблюдается биение самовара о кузов.
Поставил задние колодки и при торможении чуствую передние.
На умывальники не подается вода.
Проспринцевать автомобиль.
Горит лампочка жиклера.
Иногда храпит автомобиль.
Хрумкает какая-то коробка на холостых.
Установить местонахождения топливного фильтра.
Реанимация замков дверей.
Отсутствует связь двигателя с колесами.
Газовый педаль бьется под ногами.
При ударе по рулевой колонке двигатель глохнет.
При движении автомобиля доносятся перманентные звуки из-под днища.
Иногда загорается аварийный знак "поддон".
Пора менять выхлопную трубу- конец стал ржаветь и осыпаться.

Прочитать...

(вечный спор о преимуществах/недостатках АКПП)
- Автоматическая коробка - это как бюстгалтер, настоящим мужикам не нужна. Только для девочек...
- Ну а как же, некоторые девушки используют механику?
- Ну, вот, некоторые девушки не носят лифчики. И что? По-моему, им это только в плюс!

Прочитать...

Dark Phantom: дарова студент)
Майн Кайф?: О!
Майн Кайф?: Какие функции выполняет трансмиссионная жидкость?
Майн Кайф?: Быстро
Dark Phantom:
1. Передача крутящего момента в гидротрансформаторе от двигателя в коробку передач
2. Обеспечение функционирования системы управления и контроля
3. Работы фрикционных дисков
4. Смазка и охлаждение трущихся деталей
Майн Кайф?: Из каких элементов обычно состоит гидротрансформатор?
Dark Phantom: ты как учишься я не понимаю)
Майн Кайф?: Как видишь
Майн Кайф?: При помощи высоких технологий
Майн Кайф?: Ты ищи давай,10 минут до сдачи листка
Dark Phantom: ГИДРОТРАНСФОРМАТОР состоит из двух лопастных машин,центробежного насоса,центростремительной турбины и расположенного между ними направляющего аппарата реактора.
Майн Кайф?: Заебись
Майн Кайф?: Зачет за полугодие сдан
Майн Кайф?: Теперь привет =)

Прочитать...
Мы Вконтакте vk.com/bibofun
Лучшее за неделю

Лучшие авторы


Все материалы, которые размещены на сайте, представлены только для ознакомления и являются собственностью их правообладателя. Администрация не несет ответственности за информацию, размещенную посетителями сайта. Сообщения, оставленные на сайте, являются исключительно личным мнением их авторов, и могут не совпадать с мнением администрации. письма слать на: sitemagnat@gmail.com