18+
1 секунда Для мозга Хочу знать Исторические факты Реклама Советы Путешествия Авто
«    Ноябрь 2017    »
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
27282930 


Путешествия

Авто

13-05-2015

Трудный выбор! Атмо или Турбо

Тюнинг двигателя: Сложный выбор

Тюнинг двигателя. Эти два слова за последние несколько лет с геометрической прогрессией набирает популярность среди водителей любых возрастов. В основном, безусловно, это магическое словосочетание будоражит умы молодежи, но и среди водителей средних и даже преклонных возрастов есть поклонники данного движения. Среди читателей данной статьи вряд ли будут заматерелые спецы (они с этой информацией знакомы не понаслышке и вряд ли найдут в ней что-то новое), поэтому мы постараемся разобраться во всем, исходя из неглубоких изначальных познаний в этой области. Итак, чтобы понять, по какому принципу и за счет чего увеличивается мощность двигателя, нужно для начала разобраться, а что же такое вообще, этот двигатель, и как он вообще работает?

Поршневой двигатель внутреннего сгорания, по сути, представляет собой большой насос, который закачивает в себя воздух с топливом в определенных пропорциях, сжигает его внутри себя и преобразует тепловую энергию в кинематическую. Кинетическая энергия же в свою очередь по длинной цепочке трансмиссии заставляет колеса вращаться. Мы абстрагируемся от подробностей, связанных с инерционными потерями, потерями на трение внутри двигателя, от особенностей способов подачи топлива и многих других немаловажных факторов, которые, безусловно, в конечном итоге влияют на мощность двигателя, но являются сопутствующими и неизбежными, то есть изначального права выбора не предоставляющими.

Принято считать, что есть две основополагающих ветви тюнинга двигателя – атмосферный и наддувный.
Начнем с наиболее распространенного – атмосферного.

Принцип атмосферного тюнинга основан на трех “китах”:
— уменьшение сопротивления газораспределительного механизма;
— увеличение насосной мощности двигателя;
— улучшение продувки цилиндров.

Первое – широчайшее поле для деятельности, начиная от установки дроссельной заслонки большего диаметра и заканчивая четырехдроссельным впускным коллектором. Задача этого направления тюнинга – минимизировать сопротивление, которое встречает на своем пути в цилиндры топливно-воздушная смесь. Достигается это несколькими способами:

— увеличением диаметра впускных каналов головки блока цилиндров;
— увеличением времени открытия впускных клапанов (за счет изменения фазы распределительного вала);
— увеличением открытия впускных клапанов (за счет увеличения высоты кулачка распределительного вала);
— увеличением диаметра клапанов;
— увеличением диаметра дроссельной заслонки;
— установкой всевозможных усовершенствованных ресиверов различных объемов, исполняющих роль распределителя воздуха по цилиндрам более эффективно;
— установкой системы с индивидуальным дросселем на каждый цилиндр (многодроссельные впускные коллектора).

Второе – зависит напрямую от объема двигателя. Чем больше объем – тем большую разность давлений способен создать двигатель между атмосферным и давлением внутри себя самого. А чем больше разность давлений – тем быстрее воздух будет попадать в цилиндры и тем больше его туда попадет за такт в конечном итоге. Больше воздуха – больше топливно-воздушной смеси – больше конечная мощность. Увеличить полезный объем двигателя можно всего лишь двумя способами:

— Увеличив ход поршня;
— Увеличив диаметр цилиндра (а следовательно – и поршня).

Третье – улучшение продувки цилиндров. Продувка цилиндров так же влияет на наполнение двигателя топливно-воздушной смесью, ведь чем проще покинуть отработанным выхлопным газам двигатель – тем меньшее сопротивление они создадут для поступления топливно-воздушной смеси. Так же сопротивление создают всевозможные катализаторы, резонаторы и непосредственно оконечные глушители. В идеале выхлопная система должна быть полностью прямоточной, с минимальными сопротивлениями и изменениями направления для движения выхлопных газов.

Но при любом тюнинге двигателя стоит помнить о золотом правиле узкого места: уменьшив сопротивление на выпуске, вы вряд ли добьетесь ощутимого эффекта, не приложив руки к впуску, и наоборот. Система всегда должна быть согласованной и сбалансированной. Именно поэтому установка на стандартный двигатель таких вещей, как дроссельный патрубок увеличенного диаметра, фильтр нулевого сопротивления, прямоточного глушителя – не дают ожидаемого эффекта, ведь производительность газораспределительного механизма и объем двигателя от этого ничуть не изменились. Да, безусловно, на многих современных автомобилях “душителем” производительности двигателя является соблюдение требований по нормам токсичности Евро, и для того, чтобы двигатель получил возможность работать с максимальной отдачей без серьезных изменений, зачастую, достаточно просто убрать “рестриктор” выхлопной системы – катализатор. Но не стоит ожидать от этой процедуры грандиозной прибавки мощности, ведь двигатель, как мы помним, практически не изменился — ему просто убрали “душитель”.
Ох, это манящее слово “турбо”

Что такое наддув? Зачем он и как он добавляет мощности двигателю? Все достаточно просто и незамысловато. Как мы помним, мощность двигателя напрямую зависит от количества топливно-воздушной смеси, которую он преобразовал из тепловой энергии в кинематическую за единицу времени. Наддувный двигатель отличается от атмосферного в принципе своей работы только одним – давлением на впуске. Увеличившаяся разница между давлением воздуха (меньше атмосферного), создаваемым самим двигателем и давлением, увеличенным нагнетателем, заставляет попадать в мотор еще больше топливно-воздушной смеси. Таким образом, наддув – это наипростейший и эффективнейший способ для увеличения мощности. Он позволяет относительно пренебречь насосной мощностью самого мотора и избежать дорогостоящей процедуры увеличения объема для получения заветной цифры на стенде измерения мощности. Для этого достаточно просто увеличить разницу давлений.

Но, стоит помнить о том, что для наддувного двигателя действуют те же самые законы физики, что и для атмосферного, а значит, он так же ограничен пропускной способностью газораспределительного механизма и пропускной способностью выхлопной системы. Поэтому, для достижения максимальных результатов, наддувный ДВС так же следует должным образом подготовить, улучшив пропускную способность газораспределительного механизма.
Так что же все-таки делать?

Помните: прежде, чем начинать какой-либо тюнинг двигателя, всегда нужно точно знать, что хочется получить в итоге, какая цель преследуется изначально. Из “сборной солянки” очень редко может получиться толк. Никогда не стоит проектировать двигатель из деталей, которые у кого-то когда-то ехали по отдельности. Другими словами, к примеру, распредвалы, которые хорошо себя показали на одной конфигурации – могут запросто быть абсолютно неподходящими для другой. Каждая конфигурация должна быть полностью сбалансированной и просчитанной.

Что выбрать, атмо или турбо? Это скорее вопрос религии, и с каждой стороны приверженцев всегда найдутся веские аргументы в защиту своего направления тюнинга. Но следует помнить всегда об одном факте – атмосферное давление постоянно и практически неизменно, поэтому для любого атмосферного мотора есть предел мощности, превысить который очень сложно и дорого, а зачастую – просто невозможно.


Нравится(+) 0 Не нравится(-) Google+
Волга ГАЗ-21
Волга ГАЗ-21 (8 фото)

Волга ГАЗ-21
Максимальна скорость 359 км/ч Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг

Полезные советы
Полезные советы

Полезные советы

Езда на высоких/низких оборотах. Можно или нельзя?

Каждый раз водители задают вопрос: на каких оборотах лучше ездить на автомобиле, на высоких или на низких?

И так, двигатели внутреннего сгорания делятся на 2 типа:

1. Тихоходные (например, москвич 2141)

2. Высокооборотистые (от классики- до приоры и гранты)

Первый тип двигателя – тихоходный, рассчитанный на тягу, а не на раскручивание двигателя для достижения максимальной скорости. Он похож на дизельный тип. Максимальный крутящий момент достигается на низких оборотах (для бензинового типа) (около 2500 об./мин.)

У высокооборотистых силовых агрегатах, пик крутящего момента приходится в диапазоне 3500-4500 об./мин. Следовательно, машина лучше тянет на высоких оборотах.

К чему приводит езда на низких оборотах?

К чему все эти цифры. Дело в том, что высокооборотистый тип двигателя, при работе на низких оборотах испытывает:

1. Масляное голодание. Масляный насос плохо подает масло на небольших оборотах, а в это время под большой нагрузкой работают подшипники (вкладыши коленчатого вала). Из-за низкого давления масла, оно, плохо смазывает трущие детали двигателя и со временем начинают тереться “металл об металл”, что может привести к перегреву и заклиниванию основных механизмов силового агрегата.

2. Образуется нагар в камере сгорания. Бензин сгорает не полностью, засоряются свечи, форсунки.

3. Распредвал работает под нагрузкой. Начинают стучать пальцы поршней.

4. Происходит детонация, т.е. бензин взрывается раньше, чем надо (самовоспламенение), большая нагрузка на поршневую группу. Двигатель дергается, больше греется.

5. Увеличивается нагрузка на трансмиссию. Коробка плохо смазывается и работает под нагрузкой из-за езды в натяг.

6. Увеличивается расход топлива. На низких оборотах, чтобы ускорится, педаль “газа” вдавливается больше чем, если бы двигатель был раскручен, следовательно, дополнительное обогащение смеси – отсюда и больший расход.

7. Малая приемистость на дороге. В случаи возникновения опасной ситуации, невозможно быстро ускорится.

Я Вас наверно напугал, теперь, сложилось впечатление, что нужно ездить только на высоких оборотах. Нет, на высоких, тоже нагрузка на все узлы автомобиля (сцепление трансмиссия, расход большой). Самая приемлемая езда на средних оборотах. А вообще нужно слушать двигатель, чувствовать тягу. Если спускаться с горки (“газ ” отпущен), то обороты 1500-2000 об/мин не вредны, т.к. силовой агрегат не работает “внатяг”.

Основные факторы езды на средних оборотах (средние обороты в диапазоне (2800-4500об/мин))

Двигатель работает без нагрузок;
Легко может набрать скорость;
Меньше нажимается педаль акселератора, следовательно, и меньше расход топлива;
Топливо сгорает полностью, не образуется нагар в цилиндрах ;

Для того чтобы двигатель был в “форме”, иногда полезно раскручивать его до максимальных оборотов, чтобы он самоочистился от нагара в цилиндрах, так сказать “прочихался”.

Многие говорят: “вот на холостом ходу двигатель нормально же смазывается, значит можно и на них ездить или чуть выше ХХ”.

Не стоит забывать, что на ХХ двигатель работает без нагрузок. Во многих книжках для эксплуатации автомобиля написано, что нежелательно работы двигателя, больше 15-20 мин на ХХ.

Катайтесь аккуратно, не насилуя двигатель, и тогда он будет служить Вам долгие годы.

Топливная система ( система питания топливом) предназначена для пит...
Топливная система ( система питания топливом) предназначена для пит... (5 фото)

Топливная система ( система питания топливом) предназначена для питания двигателя автомобиля топливом, а также его хранения и очистки.

Топливная система автомобиля имеет следующее устройство:

топливный бак;
топливный насос;
датчик уровня топлива;
топливный фильтр;
топливопроводы;
система впрыска.

Топливная система бензинового и дизельного двигателей имеет, в основном, аналогичное устройство. Принципиальные отличия имеет система впрыска.

Топливный бак предназначен для хранения запаса топлива, необходимого для работы двигателя. Топливный бак в легковом автомобиле обычно располагается в задней части на днище кузова. Емкость топливного бака обеспечивает в среднем 500 км пробега конкретного автомобиля. Топливный бак изолирован от атмосферы. Вентиляцию топливного бака производит система улавливания паров бензина.

Топливный насос подает топливо в систему впрыска и поддерживает рабочее давление в топливной системе. Топливный насос устанавливается в топливном баке и имеет электрический привод. При необходимости используется дополнительный (подкачивающий) насос (не путать с топливным насосом высокого давления системы впрыска дизельных двигателей и системы непосредственного впрыска).

В топливном баке вместе с насосом устанавливается датчик уровня топлива. Конструкция датчика включает поплавок и потенциометр. Перемещение поплавка при изменении уровня топлива в баке приводит к изменению положения потенциометра. Это, в свою очередь, приводит к повышению сопротивления в цепи и уменьшению напряжения на указателе запаса топлива.

Очистка поступающего топлива осуществляется в топливном фильтре. На современных автомобилях в топливный фильтр встроен редукционный клапан, регулирующий рабочее давление в системе. Излишки топлива отводятся от клапана по сливному топливопроводу. На двигателях с непосредственным впрыском топлива редукционный клапан в топливном фильтре не устанавливается.

Топливный фильтр топливной системы дизельных двигателей имеет несколько иную конструкцию, но суть его работы остается прежней. С определенной периодичностью производится замена топливного фильтра в сборе или, только, фильтрующего элемента.

Топливо в системе циркулирует по топливопроводам. Различают подающий и сливной топливопроводы. В подающем топливопроводе поддерживается рабочее давление. По сливному топливопроводу излишки топлива удаляются в топливный бак.

Система впрыска предназначена для образования топливно-воздушной смеси за счет впрыска топлива.

Работа топливной системы осуществляется следующим образом. При включении зажигания топливный насос закачивает топливо в систему. При прохождении через топливный фильтр происходит его очистка. Далее топливо поступает в систему впрыска, где происходит распыление и образование топливно-воздушной смеси.

На некоторых автомобилях рабочее давление в топливной системе создается при открытии водительской двери (включается топливный насос)

ГАЗ-ГЛ-1 — первый советский гоночный автомобиль заводской постройки...
ГАЗ-ГЛ-1 — первый советский гоночный автомобиль заводской постройки...

ГАЗ-ГЛ-1 — первый советский гоночный автомобиль заводской постройки, выпущен на Горьковском автомобильном заводе предположительно не более чем в двух экземплярах. Разработан в 1938 году на базе серийного автомобиля ГАЗ-М-1.

Серийный двигатель ГАЗ-М-1 был подвергнут форсировке: увеличен диаметр клапанов, применена новая головка блока цилиндров, мощность двигателя возросла с 50 л.с. до 65 л.с.

Заводским испытателем ГАЗ являлся Аркадий Николаев. На первом заезде в Киеве (1938 год) удалось достичь скорости 143 км/ч. В Москве этот испытатель разогнал машину до 147 км/ч

Волга ГАЗ-21
Волга ГАЗ-21

Волга ГАЗ-21

Максимальна скорость 359 км/ч.
Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг.

Технологии, которые сделали SR-71 Blackbird самым быстрым самолетом...
Технологии, которые сделали SR-71 Blackbird самым быстрым самолетом...

Технологии, которые сделали SR-71 Blackbird самым быстрым самолетом в истории .

7 декабря 1903 года братья Райт осуществили первый в истории управляемый человеком полет на самолете. Несмотря на то, что скорость полета составляла всего 10,9 км/ч (при встречном ветре в 43 км/ч), а его дальность всего 37 метров, это событие фактически открыло первую главу истории современной авиации. Спустя всего 61 год и 5 дней с момента первого полета человека на самолете свой первый взлет осуществил Lockheed SR-71 Blackbird — сверхзвуковой стратегический разведчик ВВС США.

Этот самолет по-прежнему считается самым быстрым в истории, после того как в 1976 году на нем был установлен абсолютный рекорд скорости среди пилотируемых самолётов с прямоточными двигателями, развив 3529,56 км/ч. И своему званию «Черный дрозд» обязан своим уникальным гибридным двигателям.

На скоростях до 2 Маха две тяговые системы Lockheed SR-71 Blackbird работают как самые обычные прямоточные воздушно-реактивные двигатели. Воздух подается внутрь через переднюю часть гондолы двигателя, проходя по узкому каналу, в результате чего создается воздушная волна, которая проходит в многоступенчатый компрессор, после чего попадает в камеру сгорания, где смешивается с топливом. Разогретая смесь раскручивает турбину, создавая тягу. Прямо за турбиной находится форсажная камера, в которую при добавлении топлива усиливается давление, заставляя избыточный воздух быстрее выходить из сопла двигателя, увеличивая тем самым его тягу. И хотя форсажная камера за счет более мощного потока воздуха позволяет серьезно повысить ускорение самолета, ее использование очень неэффективно в плане расхода топлива.

Уникальным двигатель J58, использующийся в сверхзвуковом самолете Lockheed SR-71 Blackbird, делают шесть перепускных воздуховода, которые обычно не отображаются на схемах этого двигателя. Эти воздуховодные трубки начинают работать, когда самолет набирает скорость выше 2,2 Маха. Они продвигают сжатый воздух из четвертой ступени компрессора прямо в форсажную камеру, минуя тем самым газотурбинный агрегат (основную часть двигателя). Это позволяет системе вести себя скорее как прямонаправленный двигатель и гораздо эффективнее расходовать топливо в форсажной камере.

Большая часть движущей силы самолета полагается на циркуляцию сжатого воздуха в соотношении 39:1, дополнительное сжатие воздуха в соотношении 1,6:1 создается за счет четырех турбин. Сочетание воздушной компрессии за счет турбин и системы прямоточной компрессии делает J58 весьма уникальным двигателем — прямоточным реактивным двигателем, который, в свою очередь, позволяет развивать скорости, при которых обычные реактивные двигатели могут просто расплавиться. Но это еще не все.

Одной из важнейших деталей, которые позволяют J58 справляться с такими невероятными задачами, являются его воздухозаборники. В передней части двигателя расположен специальный подвижный конус. Позади конуса расположен диффузор, где воздух разделяется на два потока перед тем, как попадает непосредственно в сам двигатель. На сверхзвуковых скоростях на конус подается давление основной сверхзвуковой волны, что позволяет подавать к двигателю наиболее высокий объем доступного воздуха. Рядом с входом воздухозаборника формируется вторая ударная волна так называемого номинального значения. Образуется она когда воздух низкого давления на сверхзвуковых скоростях поступает в мотогондолу двигателя и переходит в состояние высокого давления внутри гондолы (то есть затормаживается до досверхзвукового значения).

Состояние ударной волны номинального значения (имеющего наибольшую пользу для работы всей системы) зависит от скорости самолета, а также от положения воздухозаборника и воздухозаборного конуса. Для того чтобы максимизировать время состояния ударной волны номинального значения, конус воздухозаборника, который находится в выдвинутом положении при числах Маха до 1,6, начинает задвигаться внутрь. При достижении самолетом крейсерской скорости в 3,2 Маха края разбиваемого конусом воздушного потока направлены прямо на обтекатель фронтальной части гондолы. При такой скорости двигатель J58 достигает максимального значения своей эффективности расхода топлива.

В передней части воздухозаборника имеются так называемые воздушные ловушки, по которым проходящий воздушный поток используется для охлаждения двигателя. При низких дозвуковых скоростях воздуха, поступающего через воздухозаборную камеру, становится недостаточно для охлаждения двигателя, поэтому с внешней части двигателя предусмотрены специальные заслонки, которые при низких скоростях остаются открытыми и забирают дополнительный воздух. При повышении скорости свыше 0,5 Маха эти заслонки закрываются и воздушный поток идет уже через основной воздухозаборник.

За соплом двигателя расположены специальные створки, которые также находятся в открытом положении при низких скоростях самолета. Они помогают предотвращать потерю силы тяги, которая может возникать в момент недостаточного потока выпуска. Они закрываются при скорости полета от 1,2 Маха и большую часть времени находятся в закрытом состоянии во время всего полета самолета, открываясь только при взлете, посадке и дозаправки самолета в воздухе.

Благодаря наличию описанных выше заслонок и створок, двигатель J58 позволяет самолету летать на гораздо более низких скоростях, по сравнению с его крейсерской скоростью.

Cоздан 2-литровый двигатель мощностью 450 лошадиных сил
Cоздан 2-литровый двигатель мощностью 450 лошадиных сил (8 фото)

Cоздан 2-литровый двигатель мощностью 450 лошадиных сил

Компания Volvo представила концепцию уникального бензинового двигателя Drive-E, выдающего мощность в 450 лошадиных сил при рабочем объёме в два литра и конструкции с четырьмя цилиндрами.

Столь впечатляющего показателя по мощности удалось добиться за счёт особого трёхкомпонентного турбонаддува. Агрегат оборудован двумя параллельно работающими турбонагнетателями, воздух в которые подаётся турбокомпрессором на электроприводе. Причём важно отметить, что сжатый воздух от турбокомпрессора попадает именно в турбонагнетатели, а не в цилиндры. Топливо подаётся сдвоенным топливным насосом, поддерживающим давление в 250 бар.

В целом, как отмечается, в основе концептуального двигателя Drive-E лежат технологии, которые крайне редко можно встретить в четырёхцилиндровых установках. Благодаря тройному турбонагнетателю и уникальной системе подачи топлива силовой агрегат обладает высокой мощностью без провалов тяги на низких оборотах, что характерно для двигателей с одним турбонагнетателем.

Уже на ранней стадии разработка концептуального агрегата привлекла к себе ряд заинтересованных сторон, которые приняли участие в его создании — это компании AVL, Denso и Volvo Polestar Racing. В результате для создания двигателя применялись технологии, которые используются для разработки установок для гоночных автомобилей.

Облегченный маховик. Что он дает?
Облегченный маховик. Что он дает?

Облегченный маховик. Что он дает?

При тюнинге двигателя некоторые автолюбители прибегают к замене стандартного маховика на облегченный. Его основное преимущество - это меньший вес по сравнению со стандартной деталью. Уменьшения веса составляет около полутора килограмм. Следует помнить, что для снижения веса маховика удаление лишнего металла с малого радиуса приведет лишь к снижению прочности изделия. Необходимо удалить лишний металл с максимально радиуса маховика. Это понадобиться тем, кто хочет самостоятельно изготовить облегченный маховик. Для других, это просто информация к размышлению.

Что дает облегченный маховик и зачем нужно облегчение маховика? Он быстрее раскручиваться и у него меньшая сила инерции. Если говорить попросту, то это должно положительно сказаться на динамических характеристиках автомобиля. Мотор будет быстрее достигать максимальных оборотов, прибавка мощности составит примерно 3-4 процента. Но не следует полагать, что если мы поставим облегченный маховик, то наша машина быстрее поедет на эти самые 3-4 процента.

Есть маленький нюанс, который надо учитывать. Если мы уж начали менять стандартный маховик на облегченный, то уж надо полностью перестраивать весь двигатель. Нужна комплексная работа по тюнингу двигателя и трансмиссии. И только при грамотном тюнинге можно добиться потрясающих результатов.

Волга ГАЗ-21.
Волга ГАЗ-21. (5 фото)

Волга ГАЗ-21.

Максимальна скорость 359 км/ч
Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг

G 800 Widestar 1 100 000 $
G 800 Widestar 1 100 000 $ (5 фото)

G 800 Widestar 1 100 000 $

Максимальная скорость: 275 км/ч
Разгон до 100 км/ч: 4 сек
Мощность двигателя: 800 л.с. 1420 Н/м 2100 об/мин.
Удельная мощность: 314 л.с./т 3.19 кг на 1 л.с.
Объем двигателя: 6.2 litre V12
Вес автомобиля: 2550 кг

•Тюнинг и форсировка двигателя
•Тюнинг и форсировка двигателя

•Тюнинг и форсировка двигателя

Автолюбители, которые занимаются тюнингом двигателя разделяются на два лагеря. Первым, нужно всего лишь немного поднять мощность мотора своей машины, т.к. их не устраивает разгонная динамика или другие характеристики мотора. Обычно они делают тюнинг двигателя своими руками, ведь перечень работ по форсировке минимален. Он включает в себя либо перепрошивку блока управления ЭБУ, либо замену некоторых деталей мотора на спортивные. В итоге, мощность двигателя повышается на 10-15 процентов.

Другие автолюбители, подходят к тюнингу мотора очень основательно. Они заменяют все детали двигателя на спортивные, устанавливают турбины и растачивают двигатель. Мощность такого двигателя зависит от потенциала мотора-донора или от кошелька владельца. Ведь бывает, что мощность мотора поднимают на 100 "лошадок", а бывает и до 1000 лошадиных сил. Тут уж все зависит от задач, для которых предпринимался тюнинг двигателя.

•Что такое спортивный распредвал?

Спортивный распредвал дает существенное увеличение мощности двигателя для любого автомобиля. Он завоевал огромную популярность, как среди обычных автолюбителей, так и среди автоспортсменов. Спортивный распредвал может поднять мощность двигателя, как в области верхних оборотов двигателя, так и в области нижних.

•Что такое кованые поршни? Их особенности

При тюнинге двигателя желательно применять кованые поршни, если вы надеетесь на хороший результат. Кованые поршни предназначены для гоночных или спортивных автомобилей. Если вы используете автомобиль для перемещения из одной точки в другую, то кованными поршни будут для вас лишней и дорогой деталью при тюнинге двигателя.

Воздушный фильтр нулевого сопротивления. Для чего нужен "нулевик"?

Воздушный фильтр нулевого сопротивления применяется при грамотном тюниге двигателя любого автомобиля. Они получили массовое распространение благодаря своей доступности и низкой стоимости. Еще одно неоспоримое преимущество "нулевиков" - это красивый внешний вид.

Увеличение объема двигателя - расточка блока цилиндров
При серьезном тюнинге двигателя широко распространен метод увеличения мощности - расточка блока цилиндров. Данный метод положительно влияет на увеличение, как мощностных характеристик двигателя, так и моментных. Он получил свое распространение из-за своей простоты, а следовательно и дешевизны проводимых работ.

•Модернизация электроники двигателя

Тюнинг двигателя обычно не ограничивается лишь заменой стандартных деталей на спортивные или гоночные. Обычно при тюнинге двигателя также модернизируют его электронное управление. Ведь толку от замены деталей двигателя может быть мало, если не позаботится о моторной электронике, ограничивающей потенциал двигателя.

•Шатуны для форсированного двигателя

Шатуны для спортивного мотора должны быть прямолинейны. Любое их отклонение от прям мощность форсированного двигателя. Причина в том, что при кривизне тюнинг-шатуна, он будет препятствовать движению поршней двигателя, тем самым увеличивая трение.

•Разрезная шестерня распредвала

Опытные автолюбители знают, что при оптимальном соотношении фаз газораспределения, достигается максимальная мощность двигателя. Чтобы добиться нужного положения распредвала относительно коленвала применяется разрезная шестерня распредвала, которая "перекочевала" на гражданские автомобили из автоспорта.

•Перепускной клапан турбины

Перепускной клапан предназначен для понижения давления в турбине, при избытке поступающих выхлопных газов. Лишние выхлопные газы, он отводит обратно в выхлопную систему. Наиболее популярным среди автолюбителей стал перепускной клапан фирмы HKS.

Системы зажигания для спортивного автомобиля
Существует большое количество способов модернизации системы зажигания для спортивного автомобиля. Некоторые, заменяют штатную контактную систему зажигания на бесконтактную или на микропроцессорную. Другие автолюбители, устанавливают дополнительные блоки управления Октан, Искра или Пульсар.

Волга ГАЗ-21
Волга ГАЗ-21 (8 фото)

Волга ГАЗ-21

Максимальна скорость 359 км/ч
Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг

Механический наддув.
Механический наддув. (5 фото)

Механический наддув.

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.Существует два вида механических нагнетателей: объемные и центробежные.
Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.
Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.
Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

2013 Brabus 800 Widestar (W463)
2013 Brabus 800 Widestar (W463)

2013 Brabus 800 Widestar (W463)

Цена 1100000$, 858000€, 34.3 млн. рублей
Максимальная скорость 275 км/ч
Разгон до 100 км/ч 4 сек
Мощность двигателя 800 л.с.
Крутящий момент 1420 Н/м при 2100 об/мин
Удельная мощность 314 л.с./т
Объем и тип двигателя 6233 см³ 6.3 liter V12
Вес автомобиля 2550 кг
Привод AWD
Мощность с литра 128 л.с.

BMW М5 и М6 станут мощнее
BMW М5 и М6 станут мощнее

BMW М5 и М6 станут мощнее

В BMW решили погоняться за самыми мощными "Мерседесами". В пику "сверхзаряженным" версиям штутгардтских седанов S-model от ателье AMG баварцы решили предложить покупателям так называемый "соревновательный пакет", увеличивающий мощность BMW M5 и M6.
Анонсированный недавно седан Mercedes-Benz E 63 AMG в модификации S-model получил двигатель, форсированный до 585 лошадиных сил против 557 у "обычного" E 63 AMG. Естественно, в BMW сочли это выпадом в свою сторону: седан М5 и купе М6 с их 560-сильным двигателем неожиданно оказались в аутсайдерах. Чтобы исправить ситуацию, специалисты "подразделения М" придумали так называемый Competition Package, который должен помочь седану и купе достичь сопоставимых показателей.

Помимо увеличения мощности двигателя, в BMW планируют включить в опциональный пакет еще и некоторые аэродинамические доработки, новые колесные диски, слегка перенастроенную подвеску и более мощные тормоза. Ожидается, что BMW M5 и M6 с этим пакетом будут быстрее "стандартных" в разгоне до 100 км/ч на 0,1 секунды. Таким образом, сравнявшись с конкурентами от Mercedes в мощности, баварские спорткары все равно будут отставать от них в динамике. К заказу "соревновательный пакет" будет доступен уже этим летом.
Интересно, что похожие шаги планируют предпринять и в Audi. По некоторым сведениям, опционально мощность двигателя Audi RS6 можно будет увеличить сразу до 600 лошадиных сил.

Механический нагнетатель.
Механический нагнетатель. (2 фото)

Механический нагнетатель.

Работа двигателя внутреннего сгорания (ДВС) построена на том, что топливо должно быть замешено с необходимым количеством окислителя, т. е. кислорода. Это обеспечит полное и эффективное сгорание горючей смеси и позволит достичь максимально возможной мощности. Больше сгорит – больше мощность. Кислорода в воздухе по объему всего 21%, а по массе 23% (это на уровне моря, при определенных давлении и температуре). Для нормальной работы двигателя пропорции смеси топливо–воздух принимаются приблизительно 1:14,7. Если прибавить к стандартному давлению в одну атмосферу, к примеру, еще одну, то получим в 2 раза больше воздуха, а значит, и кислорода, поступающего в цилиндры. Стало быть, мы должны получить от мотора в 2 раза больше мощности. Двигатель объемом 1,5 л при давлении наддува чуть более атмосферы практически эквивалентен трехлитровому «атмосфернику». Это, конечно, грубая арифметика, но идея именно такова. И, кстати говоря, такой прирост отнюдь не предел.

Можно пойти по пути увеличения объема моторов. Больше рабочий объем цилиндра – больше топливовоздушной смеси со всеми вытекающими отсюда последствиями. Так делали американские производители. Огромные, высокообъемные моторы с неимоверным потреблением горючего, но впечатляющим крутящим моментом. В Европе, и особенно в Японии, делали маленькие, компактные и экономичные двигатели. Но мощность, тем не менее, была также востребована покупателями автомобилей. Наверное, это была одна из причин, почему именно на старом континенте появились первые разработки нагнетателей.

История

В качестве первопроходцев, разработавших автомобильные двигатели с наддувом, можно упомянуть такие компании, как Mercedes-Daimler, Fiat, Sunbeam, Alfa Romeo. Сама идея принудительного нагнетания воздуха в цилиндры была предложена вскоре после изобретения самого ДВС. Уже в 1885 г. Готтлиб Даймлер получил немецкий патент на нагнетатель. Идея заключалась в том, что некий внешний вентилятор, насос или компрессор нагнетает в двигатель увеличенный заряд воздуха. В 1902 г. во Франции Луис Рено запатентовал проект центробежного нагнетателя. Было выпущено некоторое количество автомобилей, но затем все работы в данном направлении свернули. Принцип действия турбонагнетателя, работающего на энергии выхлопных газов, впервые описал и запатентовал швейцарский изобретатель Альфред Бюхи еще в 1905 г., но и здесь технологии того времени притормозили внедрение подобных устройств. Братья Рутс разработали объемный нагнетатель еще в 1859 г. Эти роторно-шестеренчатые компрессоры теперь так и называются – компрессоры типа «roots». На автомобилях устройства подобного типа появились в 20-е годы прошлого века благодаря компании Mercedes. Винтовой компрессор был разработан в 1936 г. Патент получил Альф Лисхолм (Alf Lysholm) – главный инженер SRM (Svenska Rotor Maskiner AB).

Тогдашний уровень развития технологий не способствовал распространению подобных устройств, но сейчас они довольно популярны. Были и другие типы нагнетателей. Со временем они естественным образом разделились на механические (с приводом от коленвала или другим способом) и турбо (с приводом от выхлопной системы). Последние, хоть и имеют общие корни и назначение, все же довольно обособленная ветвь развития нагнетателей. Далее в этой статье речь пойдет о нескольких основных типах механических нагнетателей.

Центробежный нагнетатель

Подобные нагнетатели в тюнинге получили в настоящее время наибольшее распространение. По своей конструкции они наиболее близки к турбонаддуву, поскольку имеют одинаковый принцип нагнетания воздуха. Разняться лишь способы привода. Работа осуществляется следующим образом.

Основная деталь центробежного нагнетателя – рабочее колесо, или крыльчатка. Она имеет довольно сложную конусообразную форму. Лопатки крыльчатки играют самую главную роль. От того, насколько правильно они спроектированы и изготовлены, зависит результирующая эффективность всего нагнетателя. Итак, воздух, пройдя по сужающемуся воздушному каналу в нагнетатель, попадает на радиальные лопасти крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии кожуха, где имеется диффузор. Зачастую диффузор имеет лопатки (порой с регулировкой угла атаки), призванные снизить потери давления. Далее воздух выталкивается в окружной воздушный туннель (воздухосборник), который чаще всего имеет улиткообразную форму (воздухосборник, описывая окружность, постепенно расширяется в диаметре). Такая конструкция создает необходимое давление воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух поначалу движется быстро, и его давление мало. Однако в конце улитки русло расширяется, скорость воздушного потока понижается, а давление увеличивается. Так создается необходимый подпор для накачки цилиндров «спрессованной атмосферой».

В силу самого принципа работы у центробежного нагнетателя есть один существенный недостаток. Для эффективной работы крыльчатка должна вращаться не просто быстро, а очень быстро. Фактически производимое центробежным компрессором давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 тысяч об/мин и более, а для высоконапорных компрессоров дизелей они приближаются к цифре 200 тыс. об/мин. И поскольку привод осуществляется от коленвала посредством ременной передачи на шкив турбины, шум от такого устройства довольно сильный. Хотя многим именно этот характерный свист греет душу. Появились даже обманки, имитирующие звучание работающей турбины. Проблема шумности и ресурса элементов привода частично снимается введением дополнительного мультипликатора.

Здесь стоит упомянуть интересное решение компании Powerdyne. Внутри единого корпуса нагнетателя располагается дополнительная повышающая ременная передача. Она не требует обслуживания, смазки и рассчитана на пробег более 80 тыс. км. Это позволяет уменьшить передаточное число внешней, основной ременной передачи, чем снизить ее рабочие нагрузки.

Высокие рабочие обороты накладывают особые требования на качество используемых материалов и точность изготовления (учитывая огромные нагрузки от центробежных сил). К минусам самого принципа нагнетания можно также отнести некоторую задержку в срабатывании, хотя нужно отметить, что эта задержка не столь заметна, как у турбонагнетателей. И еще одно замечание. Как правило, центробежный нагнетатель дает прибавку на довольно высоких оборотах двигателя. Сначала давление нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает. Эта особенность делает центробежные нагнетатели наиболее пригодными для тех случаев, когда более важно поддержание высоких скоростей, а не интенсивность разгона.

Как было отмечено выше, центробежные нагнетатели очень популярны. Сравнительно низкая цена и, самое главное, простота установки способствовали тому, что компрессоры этого типа почти вытеснили другие, более дорогие и сложные типы. Особенно в сфере тюнинга. В настоящее время центробежные нагнетатели производятся рядом компаний. Вот лишь самые известные из них: Paxton Automotive, Powerdyne Automotive, ATI ProCharger, RK Sport, Vortech. Нагнетатели большинства производителей доступны и у нас, в России.

Кофейный столик из автомобильного двигателя
Кофейный столик из автомобильного двигателя (8 фото)

Уникальный стеклянный столик, изготовленный из двигателя от автомобиля. Идея просто великолепная, и результат стоил всех приложенных усилий.

Диагностика работы двигателя по состоянию свечей.
Диагностика работы двигателя по состоянию свечей.

Диагностика работы двигателя по состоянию свечей.
(Забираем себе на стену-Пригодится)

На фото №1 изображена свеча, вывернутая из двигателя работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

На фото №2 типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.

На третьем фото наоборот пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов. Юбка центрального электрода свечи изображенной на фото

№4 имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительно использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

Фото № 5. Свеча имеет ярко выраженные следы масла особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Свеча на фото № 6 вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешенного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото № 7 это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синие дымление, запах выхлопа похож на мотоциклетный. Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, не вспоминайте о свечах только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Но и вы в свою очередь не забывайте с каждой заменой масла или в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего, это регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7. Так же я бы рекомендовал менять свечи местами, это связано с разными температурными режимами работы цилиндров.

Расход топлива и объем двигателя
Расход топлива и объем двигателя

Расход топлива и объем двигателя

Многих автолюбителей волнует вопрос – как связаны расход топлива и объем двигателя. Казалось было логично, что если больше объем двигателя (например – 2,0 или 2,5 литра), то тем и расход больше! А вот не всегда это так, бывает что двигатель объемом в 1,5 литра «кушает» больше чем двигатель объемом в 2,0 литра. Почему так происходит?

Итак, расход топлива и объем двигателя.

В мозге рисуется логичная прямая: чем больше объем – тем больше в этот двигатель поместится топлива, а соответственно и расход будет намного выше. Но почему практика иногда показывает обратную картину? Например, двигатель современного автомобиля с объемом в 2,0 литра имеет расход (на механике около 7-8 литров, взять тот же Skyactiv от Mazda), а вот автомобиль не совсем свежего отечественного производителя с двигателем в 1,5 литра будет иметь расход в 8 – 9 литров. Так где же логика?

Все зависит от множества факторов.

1) Технологичность. Первая причина это технологичность двигателя, автомобили очень быстро эволюционируют, а особенно сильно эволюционируют двигатели, становятся более мощными и более экономичными. Но как такое возможно? Все просто появляются новые технологии, которые позволяют увеличить мощность и уменьшить расход топлива. Простые примеры это 16 клапанов вместо 8 (быстрее впрыск топлива и отвод отработанных газов), или же инжектор вместо карбюратора (инжектор практически никогда не перельет топлива и не зальет свечи в отличие от карбюратора), также появился многоточечный впрыск топлива в цилиндры и т.д. В общем сейчас существует очень много технологий которые на механическом уровне позволяют экономить двигателю топливо, без потери мощности.

2) Прошивки. Не секрет что сейчас, в «инжекторных» автомобилях можно менять программу прошивки блока ЭБУ (мозга двигателя). Автомобиль при помощи таких прошивках может быть очень экономичный! При мне прошивали 2,0 литровый FORD FOCUS, и достигали расхода в 7 литров по городу. НО при таких «экономичных» прошивках страдает мощность двигателя, то есть автомобиль получается «задушенный», с места с «пробуксоном» на нем не тронешься. Правда можно поставить и «мощную» прошивку тут все будет наоборот, расход увеличится, причем многократно, но и увеличится мощность также многократно. Тут нужно выбирать, что для вас нужно.

3) Стиль езды. Тут как говорится, можно экономить – ездить спокойно, а можно топить педаль в пол, соответственно и расход увеличится. От стиля езды расход очень сильно зависит. Например – у моего знакомого на KIA RIO в предыдущем поколении (механика), расход с двигателем 1,4 литра, летом 10 литров, но он выжимает из своего автомобиля все что можно, практически всегда крутит «двигатель»! А у меня с двигателем 1,6 литра и с автоматом расход топлива 9,0 литров на 100 километров (подробнее в статье – Chevrolet Aveo расход топлива). Хотя и двигатель мощнее и автомат.

4) Техническая исправность автомобиля. Очень обширная тема, на расход может влиять очень многое. Если у вас элементарно давно не менялись воздушный и топливный фильтры, давно не чистилась топливная рейка, то расход топлива будет увеличен. Вполне может двигатель 1,6 литра (со старыми фильтрами) расходовать больше чем 2,0 литра (но со свежими фильтрами). Так что следим за фильтрами и меняем их вовремя.

5) Тип трансмиссии. Следующим пунктом в нашей статье – расход топлива и объем двигателя, логично поговорить о типе трансмиссии. Тут думаю все понятно, механика и продвинутые автоматы (вариаторы, коробка DSG или автомат на шесть и более передач), будут расходовать меньше, чем старые автоматы на три – четыре передачи. Таким образом, если автомобиль с двигателем 1,4 литра укомплектован автоматом на 4 передачи, то он будет расходовать больше, чем автомобиль с двигателем 2,0 литра, но с вариатором или автоматом на 6-ть передач.

6) Турбина или не турбина. Если взять два двигателя: – например обычный 1,4 литра и турбированный 1,6 литра. ТО второй 1,6 литра, не только будет намного экономичнее (экономия иногда достигает 20 %), но и намного мощнее и производительнее.

7) Ошибочная экономия. Давайте реально подумаем – почему иногда двигатель 1,4 литра намного прожорливее, чем 1,6 литра или 2,0 литра? Все дело в мощности двигателя. Если взять один и тот же автомобиль, с одинаковой массой, но с разными двигателями (обычные, не турбированные), то получается. Чтобы достигнуть таких же характеристик разгона, двигателю 1,4 литра нужно работать в более высоких оборотах, а соответственно его практически всегда нужно будет раскручивать даже если нужно достигнуть 60 км/ч, иначе ваш автомобиль попросту не будет ехать. Если крутим двигатель больше, то и расход будет больше, это логично. Теперь двигатель 1,6 литра, он намного мощнее своего собрата, чтобы ему достигнуть 60 км/ч ему не нужно больших оборотов, он будет работать в среднем режиме, соответственно и расход топлива зашкаливать не будет.

НА этом все. Не нужно думать, что большие двигатели практически всегда это просто «убийцы» бензина, не всегда это так. Простой пример из своего жизненного опыта – есть два автомобиля Nissan Almera (1.6 литра, автомат) и Nissan Teana (2,5 литра, вариатор), расход у Nissan Almera практически такой же как и у Teana – 12 – 14 литров, а зимой Almera начала расходовать больше, примерно 14 литров, у Teana расход по бортовому компьютеру 13,1! Как то так! Так что нужно думать что покупаете, читайте в интернете, не всегда расход топлива и объем двигателя прямо пропорциональные зависимости.

Диагностика работы двигателя по состоянию свечей
Диагностика работы двигателя по состоянию свечей

Диагностика работы двигателя по состоянию свечей

Фото №1
Свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2
Типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.

Фото №3
Пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

Фото №4
Имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

Фото №5
Свеча имеет ярко выраженные следы масла особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого - неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева - характерный бело-синий выхлоп.

Фото №6
Вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедших в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото №7
Это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.

Фото №8
Последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синие дымление, запах выхлопа похож на мотоциклетный. Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, не вспоминайте о свечах только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Но и вы в свою очередь не забывайте с каждой заменой масла или в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего, это регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7.

Назначение систем регулирования фаз
Назначение систем регулирования фаз (9 фото)

Назначение систем регулирования фаз

Эффективность работы ДВС главным образом определяется организацией процесса газообмена, то есть качественным и своевременным наполнением и очисткой цилиндров. Эта задача возлагается на газораспределительный механизм и зависит от фаз газораспределения – моментов и продолжительности открытого состояния впускных и выпускных клапанов. Если клапаны открыты непродолжительное время, фазы называют «узкими». Чем дольше открыты клапаны – тем фазы «шире».

При низких оборотах коленвала объемы и скорость движения горючей смеси и отработанных газов невелики, поэтому фазы должны быть узкими, а перекрытие (время одновременного открытия впускных и выпускных клапанов – минимальным. В этом случае свежая смесь не вытесняется в выпускной коллектор через открытый выпускной клапан и, соответственно, отработанные газы не попадают во впускной. Если же «расширить» фазы на низких оборотах, отработанные газы смешаются с рабочей смесью, снизив тем самым ее качество и вызвав падение мощности и неустойчивую работу двигателя.

С ростом оборотов пропорционально увеличиваются объемы и скорость движения перекачиваемой смеси и отработанных газов в единицу времени, поэтому необходимы «широкие» фазы и большее время перекрытия для лучшей продувки цилиндров. Продувка – вытеснение выхлопных газов из цилиндра движущейся с большой скоростью топливовоздушной смесью.

Ширина фаз определяется формой кулачков распределительного вала. Чем больше высота кулачка – тем выше высота подъема клапана. Чем «тупее» его конец – тем больше время максимального подъема клапана. Таким образом, подбирая форму кулачков, конструкторы могут настроить двигатель на работу только в определенном диапазоне оборотов. При проектировании обычного дорожного автомобиля разрабатывается усредненный распредвал для компромиссного баланса между мощностью и экономичностью. При отклонении от этого диапазона, как в сторону уменьшения, так и в сторону увеличения, эффективность ДВС будет снижаться. Например, «узкофазный» мотор не позволит развить высокую мощность, а «широкофазный» будет неустойчиво работать на малых оборотах, что вынудит увеличивать частоту оборотов холостого хода. Следовательно, идеальным решением было бы изменять ширину фаз в зависимости от оборотов двигателя. Так появились системы регулирования фаз газораспределения.

Для технической реализации идеи регулирования фаз было создано множество конструкций. Для их описания потребуется не одна страница. Поэтому ознакомимся с устройством только нескольких - как простых, проверенных временем систем, так и самых современных.

Поворот распредвала

Одним из способов регулирования фаз газораспределения является изменение положения распределительного вала относительно его первоначального положения в зависимости от режимов работы двигателя. Для примера рассмотрим систему Variable Valve Timing (VVT), применяемую на автомобилях Фольксваген. Она предназначается для оптимизации фаз при работе двигателя на режимах холостого хода, максимальной мощности и максимального крутящего момента.

В систему VVT входят следующие компоненты:

• Две гидроуправляемые муфты (другое название - фазовращатели), установленные на впускном и выпускном распределительных валах. Обе муфты подключены через корпус механизма газораспределения к системе смазки двигателя. Муфты состоят из встроенного в звездочку вала наружного корпуса и неподвижно соединенного с валом ротора.Корпус и ротор могут смещаться относительно друг друга
• Корпус механизма газораспределения, установленный на головке блока цилиндров двигателя. Внутри корпуса проходят каналы для подвода и отвода масла к обеим муфтам поворота распределительных валов.
• Два электрогидравлических распределителя. Эти распределители установлены на корпусе механизма газораспределения. Они служат для регулирования подвода масла из системы смазки двигателя к обоим фазовращателям.

Управление системой VVT осуществляется блоком управления двигателя. Получая данные с датчиков о частоте вращения коленвала, нагрузке двигателя, температуре охлаждающей жидкости, а также о мгновенном положении коленчатого и распределительных валов, ЭБУ выдает сигнал на электрогидравлические распределители. Распределители открывают соответствующие каналы подвода масла, расположенные в корпусе механизма газораспределения. Масло из системы смазки двигателя поступает в гидроуправляемые муфты, которые поворачивают распределительные валы.

На режиме холостого хода впускной вал поворачивается таким образом, чтобы обеспечить более позднее открытие и соответственно более позднее закрытие впускных клапанов, а выпускной вал поворачивается так, что выпускной клапан закрывается задолго до прихода поршня в ВМТ. В результате количество отработанных газов в смеси снижается до минимума, что благоприятствует стабилизации сгорания в цилиндрах двигателя и повышению равномерности его работы на данном режиме.

Для достижения максимальной мощности при высокой частоте вращения вала двигателя производится задержка открытия выпускных клапанов. Благодаря этому увеличивается продолжительность давления газов на поршень на такте рабочего хода. Впускной клапан открывается после ВМТ и закрывается относительно поздно после НМТ. При этом динамические процессы во впускной системе используются для получения эффекта дозарядки цилиндров и соответствующего увеличения мощности двигателя.

Для получения максимального крутящего момента необходимо обеспечить возможно больший коэффициент наполнения цилиндров. Для этого необходимо раньше открывать и соответственно закрывать впускные клапаны, чтобы не допустить обратный выброс смеси из цилиндров во впускной трубопровод. При этом выпускные клапаны закрываются с небольшим опережением до ВМТ.

Подобные системы устанавливают в своих двигателях Renault (VCP), BMW (VANOS/Double VANOS), Toyota (VVT-i), Honda (VTC). Некоторые из них используют фазовращатели только на впускном распредвалу, некоторые, как и VVT – на обоих. Недостатком подобных систем является то, что они способны только сдвигать фазы в ту или другую сторону, но не могут «сужать» или «расширять» их.

Переключение фаз

Такими возможностями обладает, например, Variable Valve Timing and Lift Electronic Control (VTEC), созданная инженерами Honda. Она способна расширять фазы на высоких оборотах путем изменения высоты подъема клапана. Со времени своего создания система претерпела несколько модернизаций. Здесь рассмотрим ее третью версию – систему DOHC i-VTEC. Она представляет собой симбиоз системы VTEC с системой VTC (Variable Timing Control). Именно наличие VTC добавило в обозначение системы букву «i».

Основой VTEC любого поколения является использование трех кулачков на каждую пару клапанов. Коромысел, соответственно, тоже три. Два крайних коромысла расположены непосредственно над клапанами, третье – между ними. Два крайних кулачка низкопрофильные и предназначены для обеспечения оптимальной работы на низких и средних оборотах. Усилие от среднего высокопрофильного кулачка передается на клапана только на высоких оборотах.

Как это происходит? Примерно до 5500 об/мин газораспределение обеспечивается крайними кулачками через свои коромысла. Среднее коромысло хоть и приводится в действие кулачком, но на клапана никакого воздействия не оказывает – система VTEC отключена. При дальнейшем увеличении частоты вращения включается система VTEC. Блок управления отдает команду и управляемый давлением масла штифт, сдвигаясь, замыкает между собой все три коромысла. Таким образом, они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров. Система VTEC устанавливается и на впускной, и на выпускной распредвалы.

Для тех, кто не изучал английский
At low engine speeds - При низких оборотах двигателя
At higher engine speeds - При высок

Двигатель
Двигатель

Двигатель
Subaru boxer
Горизонтально-оппозитный
12 цилиндров
60 клапанов
Рабочий объем 3,497 куб.см
Мощность 620 л.с. при 12500 об./мин
Зажигание двойное Магнетти Марелли

Волга ГАЗ-21.
Волга ГАЗ-21. (5 фото)

Волга ГАЗ-21.

Максимальна скорость 359 км/ч
Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг

Королева "Северной Петли Нюрбургринга" и лотусовской трас...
Королева "Северной Петли Нюрбургринга" и лотусовской трас... (5 фото)

Королева "Северной Петли Нюрбургринга" и лотусовской трассы "Топ гир". Никем не побитый зверь.

Pagani Zonda R

Максимальная скорость
355 км/ч
220 mph

Разгон до 100 км/ч
2.8 сек

Мощность двигателя
750 л.с.

Объем и тип двигателя
5987 см³
6 litre V12 AMG (атмо)

Вес автомобиля
1070 кг

Привод
Задний

Во Франции создадут автомобиль на сжатом воздухе
Во Франции создадут автомобиль на сжатом воздухе

Во Франции создадут автомобиль на сжатом воздухе

Французская компания Peugeot объявила о намерении создать гибридный автомобиль, который в одном из своих циклов работы будет приводиться в движение сжатым воздухом.

Согласно сообщению компании, новая технология получила название Hybrid Air; в перспективе она позволит добиться потребления обычного топлива автомобилем на уровне двух литров на сто километров. Системы Hybrid Air планируется начать устанавливать на машины B-класса с 2016 года.

Автомобили с технологией Hybrid Air будут оснащаться обычным трехцилиндровым двигателем внутреннего сгорания, гидравлическим двигателем-насосом, автоматической трансмиссией и системой хранения и подачи сжатого воздуха. В зависимости от стиля вождения и скоростей движения автоматически будет выбираться один из режимов: на сжатом воздухе, на бензине и совместный.

В первом режиме предполагается полное выключение двигателя внутреннего сгорания. При таком режиме движения сжатый воздух будет подаваться из системы хранения в гидравлический двигатель, который затем и будет передавать вращение на колеса. При израсходовании запаса сжатого воздуха будет включаться двигатель внутреннего сгорания для его восполнения. Кроме того, запас сжатого воздуха сможет восполняться гидравлическим двигателем при торможении.

В режиме езды на сжатом воздухе количество вредных выбросов в атмосферу будет околонулевым (полностью нулевым при выключенном двигателей внутреннего сгорания). Первый режим будет задействоваться при скорости движения менее 70 километров в час. Второй режим подразумевает только работу двигателя внутреннего сгорания. Он будет задействоваться только при интенсивном ускорении или при езде за городом на постоянной скорости более 70 километров в час.

В комбинированном режиме гидравлический двигатель и двигатель внутреннего сгорания будут работать одновременно, обеспечивая одновременно существенную экономию топлива и хорошее ускорение. Такой режим, по данным Peugeot, будет задействоваться при езде по городу в режиме «стоп-старт». Как ожидается, 80 процентов времени езды по городу автомобиль с технологией Hybrid Air будет ездить за счет сжатого воздуха.

По предварительным расчетам, Hybrid Air обеспечит 45-процентную топливную экономию и 90-процентное увеличение запаса хода по топливу по сравнению с обычными автомобилями. В целом же машины с технологией Hybrid Air будут существенно тише своих обычных бензиновых собратьев.

НОВЫЙ ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ NASA ПОСТАВИЛ РЕКОРД ВРЕМЕНИ РАБОТЫ
НОВЫЙ ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ NASA ПОСТАВИЛ РЕКОРД ВРЕМЕНИ РАБОТЫ

НОВЫЙ ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ NASA ПОСТАВИЛ РЕКОРД ВРЕМЕНИ РАБОТЫ

Аэрокосмическое агентство NASA объявило на этой неделе о том, что ее улучшенный ионный двигатель на ксеноне успешно работает на протяжении уже 48 000 часов, то есть в течение пяти с половиной лет. Без остановки! С таким продолжительным безостановочным временем работы проект NASA Evolutionary Xenon Thruster (NEXT) теперь может похвастаться рекордом самого долгого и успешного тестирования среди абсолютно всех когда-либо тестировавшихся космических двигателей.

NEXT — это солнечная электроракетная система, при которой электричество, вырабатываемое солнечными панелями космического корабля, подается для питания ионного двигателя класса 7 кВт. Принцип работы такого двигателя заключается в том, что газ ксенон ионизируется, а затем разгоняется электростатическим полем, позволяя развить космическому кораблю потенциальную скорость до 145 тысяч км/ч. В настоящий момент подобные двигатели, но меньшей мощности, уже применяются, например в рамках программы NASA Dawn для исследования Весты и Цереры — одного из крупнейших астероидов в главном астероидном поясе и самой близкой к Земле карликовой планеты соответственно. Ученые заинтересованы в дальнейших работах над ионными двигателями ввиду их повышенных показателей (по сравнению с обычными химическими) эффективности.

Столь продолжительная безостановочное тестирование ионного двигателя NEXT осуществляется внутри вакуумной камеры в американском Исследовательском центре Гленна в городе Кливленде, штат Огайо. В декабре прошлого года двигатель преодолел отметку в 43 тысячи часов работы. К моменту достижения 48 тысяч часов работы, NEXT успел переработать 870 кг ксенона, выработав такую тягу, для которой, при сопоставимых задачах, потребовалось бы около 10 тонн обычного ракетного топлива.

NASA надеется, что двигатель NEXT или его вариации можно будет использовать при выполнении различных миссий, связанных с полетами в дальний космос. Несмотря на свой размер, который в несколько раз меньше, чем у обычного ракетного двигателя, новый ионный ускоритель обладает куда большей эффективностью и экономичностью, благодаря которым он способен работать долгие годы, и при этом позволяет развивать невероятно высокие скорости полета.

«Двигатель NEXT работает вот уже более 48 тысяч часов», — говорит Майкл Дж. Паттерсон, главный разработчик NEXT из центра в Гленне.
«Мы собираемся прекратить его тестирование уже на днях. Он по-прежнему полностью функционален и не имеет неисправностей. Время его работы и эффективность на данный момент времени превышают любые требования и ожидания для любой возможной исследовательской миссии».

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...
Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. М...

Самым большим самосвалом в мире в 2013 году является БЕЛАЗ-75710. Машина начала выпускаться на Белорусском автомобильном заводе. Самосвал способен перевозить 450 тонн груза.
Полная масса загруженного автомобиля составляет 810 тонн.Следует сказать, что до этого рекорд самого большого самосвала в мире держал грузовик грузоподъемностью 400 тонн.
Это был Terex MT 6300AC грузоподъемностью 400 тонн.

Технические характеристики Белаз-75710:

Двигатель: Два дизельных четырехтактных двигателя с непосредственным впрыском топлива
Номинальная мощность при 1900 об. в мин. 2x1715 кВт
Количество цилиндров: 16
Диаметр цилиндра: 165 мм
Ход поршня: 195 мм
Максимальный крутящий момент при 1500 об. в мин. 9313 Нм
Удельный расход топлива, г / кВт час 2x198
Система предпускового подогрева жидкости типа.
Система пуска - пневматический стартер.
Охлаждение диска рабочего колеса системы - гидравлическая муфта с автоматическим управлением.
Тяговый генератор: YJ177A мощность, кВт 1704
Тяговый электродвигатель: 1TB3026 - 0GB03 мощность, кВт 1200
Максимальная скорость 60 км/час
Радиус поворота, 19,8 м.
Габаритный диаметр разворота , 45 м.
Подъем кузова с помощью телескопических цилиндров с двумя ступенями и одной стадией двойного действия.
Время подъема, с 26
Время опускания, с 20
Давление в системе, МПа 26
Грузоподъемность – 450 тонн.

Уровень шума в кабине не превышает 80 дБ.
Местный уровень вибрации составляет не более 126 дБ. Общий уровень вибрации
не более 115 дБ.
Среди дополнительных устройств можно назвать: систему видеонаблюдения, система контроля давления в шинах, климат – контроль в кабине водителя.

Компоновка поршневых двигателей
Компоновка поршневых двигателей

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Волга ГАЗ-21
Волга ГАЗ-21

Волга ГАЗ-21

Максимальна скорость 359 км/ч.
Разгон до 100 км/ч: 3.9 сек.
Мощность двигателя: 700 л.с.
Объем двигателя 8,1 liter с механическим нагнетателем.
Вес автомобиля: 1500 кг.

Американцы затеяли «свечную» революцию
Американцы затеяли «свечную» революцию (2 фото)

Американцы затеяли «свечную» революцию
___________________________________

В компании Federal-Mogul официально представили новую систему зажигания, которая вполне может вытеснить нынешние свечи.

О новинке было известно еще в сентябре прошлого года, но официальная информация появилась только сейчас. По-английски устройство называется Advanced Corona Ignition System (ACIS), что переводится как «Продвинутая система коронарного зажигания». Наиболее важным в этой технологии является сокращение расхода топлива не менее чем на на 10%.

В случае с использованием обычных свечей зажигания воспламенение смеси происходит точечно — горение распространяется от искры, газы расширяются, ускоряя движение поршня вниз. Главное отличие работы ACIS в том, что вместо точечной искры происходит большее по площади воспламенение в виде короны. Это ионизирует и возбуждает топливную смесь в камере сгорания, вследствие чего процесс идет и быстрее, и эффективнее.

«Мы зарегистрировали уменьшение потребления топлива до 10% для 1,6-литрового бензинового двигателя с прямым впрыском и турбонаддувом, и у нас есть потенциал для дальнейшей модификации и улучшения», - рассказал Кристофер Микселл, директор проекта внедрения системы зажигания Corona (подразделение Powertrain Energy компании Federal-Mogul).

Как утверждают в Federal-Mogul, их разработка не только поможет повысить топливную экономичность за счет лучшего сгорания смеси, но и даст конструкторам двигателей возможность сделать их еще более совершенными. Сейчас же двусоставный воспламенитель позволяет производителям двигателей заменить традиционные системы с катушкой и свечой зажигания без вмешательства в конструкцию мотора.

Некоторое время назад японцы в содружестве с румынскими коллегами разработали лазерные свечи зажигания. В основе их изобретения – многоточечный поджиг топливной смеси по всему объему цилиндра.
Объявляла о намерениях внедрить в свой новый роторный двигатель оригинальную систему зажигания и компания Mazda. Для воспламенения топливно-воздушной смеси вместо обычной искры в ней также будут использоваться лазерные лучи.

Волга ГАЗ-21
Волга ГАЗ-21 (4 фото)

Волга ГАЗ-21

Максимальна скорость 359 км/ч. Разгон до 100 км/ч за 3.9 сек. Мощность двигателя 700 л.с. Объем двигателя 8,1 л. с механическим нагнетателем. Вес автомобиля: 1500 кг.

Забери себе на стену, чтобы не потерять!:)
Забери себе на стену, чтобы не потерять!:)

Забери себе на стену, чтобы не потерять!:)

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компоновку

Компоновка поршневых двигателей
Компоновка поршневых двигателей

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

BMW 750i
BMW 750i (7 фото)

BMW 750i

Двигатель
Объём двигателя (см3)4799
Мощность двигателя (л.с.)367
Обороты максимальной мощности, макс. (об/мин)6300
Количество цилиндров-8
Количество клапанов на цилиндр-4
Максимальный крутящий момент (Н•м)490
Обороты максимального крутящего момента, макс. (об/мин)3400
Тип двигателя-Бензиновый
Конфигурация двигателя-V-образный
Тип впуска-Распределенный впрыск

Трансмиссия
Количество ступеней-6
Коробка передач-Автомат
Привод-Задний

Эксплуатационные показатели
Время разгона до 100 км/ч (сек)5
Максимальная скорость (км/ч)250
Расход топлива в городе (л/100 км)16.9
Расход топлива на шоссе (л/100 км)8.3
Объём топливного бака (л)88
Рекомендуемое топливо-АИ-95

В новостях про отказ двигателя у боинга в Сингапуре берут интервью у человека, что находился в тот момент в салоне самолёта:
-Мы все почувствовали хлопок и я в окне увидел горящий двигатель. И тогда я ощутил лёгкое волнение...

Прочитать...

Скорость движения автомобиля в пробке зависит не от мощности двигателя
автомобиля, а от скорости самой пробки.
(c) Sj

SuperJur.narod.ru

Прочитать...

Мощность двигателя северокорейской баллистической ракеты составляет 10
тыс. лошадиных сил. Это примерно половина всех северокорейских лошадей.

Прочитать...

Африка. Наши дни. Самолет Ан-12 с русским экипажем.
Доп.пояснение - для запуска двигателей необходимо сначала запустить ВСУ
-
маленький вспомогательный двигатель, от которого уже запускаются
основные
4 двигателя, так как мощности аккумуляторов недостаточно для раскрутки
большого
двигателя.
На ВСУ проблемы - не работает блок запуска. Техник стоит у борта
самолета
с кувалдой и, по команде бортинженера, нажавшего в кабине кнопку
запуска,
хре..ачит от души по этому блоку. Замыкание, контакт, запуск в норме.
Стоящая
рядом в ожидании посадки группа китайцев, которым предстоит лететь на
этом
самолете, в тихом шоке застывает соляными столбами. Видя их реакцию,
техник,
прежде чем закрыть люк доступа, показывает китайцам злополучный блок и
поясняет:
"Made in Taiwan".

Прочитать...

Скорость вашей машины никак не зависит от мощности двигателя, стажа
вождения или ограничивающих знаков. Она зависит только от долбоеба,
который плетется впереди вас по однополоске.

Прочитать...

последователльность статусов в асе:

Только что придумал конструкцию вечного двигателя... 0_0

Перепроверил: всё сходится. Однако, для его функционирования совершенно необходима такая деталь, как машина времени... -_-

...вроде я когда-то уже изобретал машину времени... 0_о

Восстанавливаю по памяти...

Восстановил... -_- Конструкторских недочётов нет, за исключением того, что для её функционирования абсолютно необходим работающий вечный двигатель... -_-"

Ушёл доделывать дипломную по аэродинамике крыла... @_@

Летайте самолётами Аэрофлота! (=

Прочитать...
Мы Вконтакте vk.com/bibofun
Лучшее за неделю

Лучшие авторы

Valter1364
Публикаций: 26

Все материалы, которые размещены на сайте, представлены только для ознакомления и являются собственностью их правообладателя. Администрация не несет ответственности за информацию, размещенную посетителями сайта. Сообщения, оставленные на сайте, являются исключительно личным мнением их авторов, и могут не совпадать с мнением администрации. письма слать на: sitemagnat@gmail.com