18+
1 секунда Для мозга Хочу знать Исторические факты Реклама Советы Путешествия Авто
«    Август 2019    »
ПнВтСрЧтПтСбВс
 1234
567891011
12131415161718
19202122232425
262728293031 


Путешествия

Авто

21-05-2015

Многодроссельный впускной коллектор. Расширяем кругозор.

Термины «многодроссельный впрыск» и «многодроссельный мотор» звучат в среде тюнеров довольно часто. Вспоминают их обычно, когда речь заходит о дрэг-рейсинге, реже – в дискуссиях об автоспорте. Об одной из многодроссельных машин мы писали в статье «Зеленоградский кошмар». В России есть еще несколько таких автомобилей, выступающих в гонках на четверть мили. Конструктивно их моторы очень близки.

Узнать многодроссельный (число привязано к количеству цилиндров, то есть 4-дроссельный, 6-дроссельный и т.д.) мотор довольно просто – впускные коллекторы таких машин не связаны в один узел. К каждому цилиндру подходит свой металлический патрубок, изогнутый или прямой. По компоновочным соображениям второй вариант используют чаще. Хотя, спору нет, «дудки», особенно импортные, выглядят жутко красиво. Сверкающие хромом, а порой даже золотом, нацелившиеся по ходу движения «дула», прямо-таки завораживают. Мотор сразу узнается как гоночный.
Выглядит устройство просто, если не сказать примитивно. А принципы работы? Тут, как водится, есть свои хитрости. За консультацией мы обратились в технический центр «КарТюнинг», инженеры которого проводили эксперименты с такой системой.

Появление многодроссельного впрыска, известного также как «прямые впускные каналы», или individual throttle bodies (ITB), в тюнинге не случайно. Как и многие другие технологии форсирования двигателей внутреннего сгорания, «мультидроссель» (термин мой. – И. П.) пришел из автоспорта, где применялся с 20-х годов. Правда, в начале ХХ века впрысковых систем еще не было и «дудки» совмещались с карбюраторами.
«Мультидроссели» существуют и на современных спортивных автомобилях. Их применяют кольцевики всего мира, ставят и на мотоциклах.

Одну из самых широких линеек двигателей с многодроссельным впрыском представляет фирма TodaRacing, создающая гоночные моторы для серийных японских спорткаров: Honda NSX и S2000, Mazda Miata, Nissan Skyline GT-R, Subaru Impreza WRX... Эта же система характерна и для двигателей BMW M3 и M5 – спортмодификаций стандартных машин третьей и пятой серий, подготовленных отделением M-Techniсk. Правда, опознать моторы «эмок» как многодроссельные не так уж просто – впускные коллекторы закрыты от любопытных глаз пластиковыми или карбоновыми кожухами.
«Дудки» обожают англичане и американцы, которые выпускают спортивные двигатели или модифицируют стандартные. Так, довольно часто моторы с многодроссельным впрыском можно увидеть на современных вариациях легендарного Lotus Super Seven, например Westfield. Заметьте, как свято хранятся связи времен: реплики «Супер Семерки» недалеко ушли от прародителя.

В принципе, «мультидроссели» предлагают для любых импортных бензиновых автомоторов. Но многие фирмы-производители указывают, что их бессмысленно применять для низкофорсированных или «средних» двигателей: ITB должны быть последней стадией форсировки после изменения степени сжатия и перепрограммирования электронного блока управления («перепрошивки мозгов»). Если речь идет не о специально сконструированном, а о стандартном, но переделанном моторе, требуется замена форсунок на более производительные или установка пары форсунок на каждый тракт. Например, на двигатель 1.6 зеленоградской машины были установлены форсунки от 2,5-литрового мотора BMW. Необходимы и другие модификации, в том числе полное изменение системы выпуска: пара впуск/выпуск из-за тех же рабочих тактов должна четко соответствовать друг другу. Распредвалы, коленвалы, поршни, кольца и прочие детали тоже, конечно, меняются. Если собрать все переделки вместе, фактически получается совершенно другой мотор.
Но допустим, что все стадии пройдены и без «дудок» свет не мил. Какие варианты?

Если забыть про карбюраторы, все многодроссельные системы можно поделить на два основных вида – с ресиверами и без них. Есть и подвиды – с воздушными фильтрами или «открытые». Тут даже объяснять нечего. Смысл установки воздушного фильтра один: сберечь мотор от пыли (читай – абразива) как можно дольше. Поэтому он и стоит на том же Westfield – «автомобиле выходного дня», рассчитанном далеко не на один-два заезда. В спорте, как всегда, свои ценности.

Что касается ресиверов и их отсутствия, сторонников и противников той и другой схемы примерно поровну. Напомним, что это устройство – некий накопитель воздуха, связанный с впускными коллекторами, – проще говоря, металлическая банка определенного объема. Ресивер обеспечивает необходимое давление (подпор) в коллекторе на высоких оборотах.

Обычные впускные коллекторы «гражданских» машин усреднены так, чтобы быть как можно дешевле в производстве, соответствовать потребностям большинства покупателей и вписываться в многочисленные экологические нормы. Ни о каких индивидуальных настройках речи быть не может.

Многодроссельная система улучшает наполнение цилиндров – это следствие усиления волн давления и разрежения во впускных каналах. Как известно, масса воздуха во впускном коллекторе движется волнообразно с определенной амплитудой. Фазы давления и разрежения должны быть четко синхронизированы с открытием/закрытием впускных и выпускных клапанов. Широкие равнодлинные каналы со сниженным газодинамическим сопротивлением создают подпор воздуха на рассчитанных оборотах мотора. Помимо этого отдельный впускной канал на каждый цилиндр позволяет избежать взаимного влияния трактов друг на друга – наложения волновых колебаний и неравномерного наполнения цилиндров. На практике несколько дроссельных заслонок вместо одной значительно ускоряют отклик автомобиля на нажатие педали газа. Разумеется, все это сказывается и на ВСХ. Со всеми перечисленными модификациями, которых набирается немало, прибавка максимальной мощности и крутящего момента хорошо собранного и отстроенного мотора с такой системой возрастает на 10–15 процентов.

«Мультидроссель» требует трудоемких расчетов под каждый конкретный мотор. И все равно газодинамика не укладывается в формулы, поэтому после изготовления системы нужны испытания, доводки и новые расчеты. И снова тесты. Для тюнеров, как это легко понять, алгоритм совершенно неприемлемый. Да, эмпирическим путем получили, что для вазовского 8-клапанника близкая к оптимальной длина впускного тракта – около 400 мм, круглого сечения, с определенной обработкой внутренних поверхностей. Это знают многие. Но как построить многодроссельную систему на базе этого мотора – хорошо представляют только считанные единицы.
Кроме того, возникает довольно много «побочных эффектов»: сниженный ресурс двигателя и повышенный из-за измененной системы питания расход бензина. Важно также, что производство и обслуживание таких систем, тщательность выбора материалов и изготовление деталей – довольно дорогое удовольствие. Все это веские причины для того, чтобы на «гражданских» автомобильных ДВС «волшебные дудки» не прижились.

Те же причины делают их объектом «нон грата» и в тюнинге. Для клиента тюнинговой мастерской стоимость многодроссельного впрыска примерно равна цене серьезной комплексной доводки отечественного ДВС. Зато масштабы влияния на ресурс двигателя здесь несравнимы – «мультидроссель» сокращает ему жизнь намного активнее.
Если все наши аргументы показались вам неубедительными – идите в авто- или мотоспорт.




Нравится(+) 0 Не нравится(-) Google+
Трудный выбор! Атмо или Турбо
Трудный выбор! Атмо или Турбо

Трудный выбор! Атмо или Турбо

Тюнинг двигателя: Сложный выбор

Тюнинг двигателя. Эти два слова за последние несколько лет с геометрической прогрессией набирает популярность среди водителей любых возрастов. В основном, безусловно, это магическое словосочетание будоражит умы молодежи, но и среди водителей средних и даже преклонных возрастов есть поклонники данного движения. Среди читателей данной статьи вряд ли будут заматерелые спецы (они с этой информацией знакомы не понаслышке и вряд ли найдут в ней что-то новое), поэтому мы постараемся разобраться во всем, исходя из неглубоких изначальных познаний в этой области. Итак, чтобы понять, по какому принципу и за счет чего увеличивается мощность двигателя, нужно для начала разобраться, а что же такое вообще, этот двигатель, и как он вообще работает?

Поршневой двигатель внутреннего сгорания, по сути, представляет собой большой насос, который закачивает в себя воздух с топливом в определенных пропорциях, сжигает его внутри себя и преобразует тепловую энергию в кинематическую. Кинетическая энергия же в свою очередь по длинной цепочке трансмиссии заставляет колеса вращаться. Мы абстрагируемся от подробностей, связанных с инерционными потерями, потерями на трение внутри двигателя, от особенностей способов подачи топлива и многих других немаловажных факторов, которые, безусловно, в конечном итоге влияют на мощность двигателя, но являются сопутствующими и неизбежными, то есть изначального права выбора не предоставляющими.

Принято считать, что есть две основополагающих ветви тюнинга двигателя – атмосферный и наддувный.
Начнем с наиболее распространенного – атмосферного.

Принцип атмосферного тюнинга основан на трех “китах”:
— уменьшение сопротивления газораспределительного механизма;
— увеличение насосной мощности двигателя;
— улучшение продувки цилиндров.

Первое – широчайшее поле для деятельности, начиная от установки дроссельной заслонки большего диаметра и заканчивая четырехдроссельным впускным коллектором. Задача этого направления тюнинга – минимизировать сопротивление, которое встречает на своем пути в цилиндры топливно-воздушная смесь. Достигается это несколькими способами:

— увеличением диаметра впускных каналов головки блока цилиндров;
— увеличением времени открытия впускных клапанов (за счет изменения фазы распределительного вала);
— увеличением открытия впускных клапанов (за счет увеличения высоты кулачка распределительного вала);
— увеличением диаметра клапанов;
— увеличением диаметра дроссельной заслонки;
— установкой всевозможных усовершенствованных ресиверов различных объемов, исполняющих роль распределителя воздуха по цилиндрам более эффективно;
— установкой системы с индивидуальным дросселем на каждый цилиндр (многодроссельные впускные коллектора).

Второе – зависит напрямую от объема двигателя. Чем больше объем – тем большую разность давлений способен создать двигатель между атмосферным и давлением внутри себя самого. А чем больше разность давлений – тем быстрее воздух будет попадать в цилиндры и тем больше его туда попадет за такт в конечном итоге. Больше воздуха – больше топливно-воздушной смеси – больше конечная мощность. Увеличить полезный объем двигателя можно всего лишь двумя способами:

— Увеличив ход поршня;
— Увеличив диаметр цилиндра (а следовательно – и поршня).

Третье – улучшение продувки цилиндров. Продувка цилиндров так же влияет на наполнение двигателя топливно-воздушной смесью, ведь чем проще покинуть отработанным выхлопным газам двигатель – тем меньшее сопротивление они создадут для поступления топливно-воздушной смеси. Так же сопротивление создают всевозможные катализаторы, резонаторы и непосредственно оконечные глушители. В идеале выхлопная система должна быть полностью прямоточной, с минимальными сопротивлениями и изменениями направления для движения выхлопных газов.

Но при любом тюнинге двигателя стоит помнить о золотом правиле узкого места: уменьшив сопротивление на выпуске, вы вряд ли добьетесь ощутимого эффекта, не приложив руки к впуску, и наоборот. Система всегда должна быть согласованной и сбалансированной. Именно поэтому установка на стандартный двигатель таких вещей, как дроссельный патрубок увеличенного диаметра, фильтр нулевого сопротивления, прямоточного глушителя – не дают ожидаемого эффекта, ведь производительность газораспределительного механизма и объем двигателя от этого ничуть не изменились. Да, безусловно, на многих современных автомобилях “душителем” производительности двигателя является соблюдение требований по нормам токсичности Евро, и для того, чтобы двигатель получил возможность работать с максимальной отдачей без серьезных изменений, зачастую, достаточно просто убрать “рестриктор” выхлопной системы – катализатор. Но не стоит ожидать от этой процедуры грандиозной прибавки мощности, ведь двигатель, как мы помним, практически не изменился — ему просто убрали “душитель”.
Ох, это манящее слово “турбо”

Что такое наддув? Зачем он и как он добавляет мощности двигателю? Все достаточно просто и незамысловато. Как мы помним, мощность двигателя напрямую зависит от количества топливно-воздушной смеси, которую он преобразовал из тепловой энергии в кинематическую за единицу времени. Наддувный двигатель отличается от атмосферного в принципе своей работы только одним – давлением на впуске. Увеличившаяся разница между давлением воздуха (меньше атмосферного), создаваемым самим двигателем и давлением, увеличенным нагнетателем, заставляет попадать в мотор еще больше топливно-воздушной смеси. Таким образом, наддув – это наипростейший и эффективнейший способ для увеличения мощности. Он позволяет относительно пренебречь насосной мощностью самого мотора и избежать дорогостоящей процедуры увеличения объема для получения заветной цифры на стенде измерения мощности. Для этого достаточно просто увеличить разницу давлений.

Но, стоит помнить о том, что для наддувного двигателя действуют те же самые законы физики, что и для атмосферного, а значит, он так же ограничен пропускной способностью газораспределительного механизма и пропускной способностью выхлопной системы. Поэтому, для достижения максимальных результатов, наддувный ДВС так же следует должным образом подготовить, улучшив пропускную способность газораспределительного механизма.
Так что же все-таки делать?

Помните: прежде, чем начинать какой-либо тюнинг двигателя, всегда нужно точно знать, что хочется получить в итоге, какая цель преследуется изначально. Из “сборной солянки” очень редко может получиться толк. Никогда не стоит проектировать двигатель из деталей, которые у кого-то когда-то ехали по отдельности. Другими словами, к примеру, распредвалы, которые хорошо себя показали на одной конфигурации – могут запросто быть абсолютно неподходящими для другой. Каждая конфигурация должна быть полностью сбалансированной и просчитанной.

Что выбрать, атмо или турбо? Это скорее вопрос религии, и с каждой стороны приверженцев всегда найдутся веские аргументы в защиту своего направления тюнинга. Но следует помнить всегда об одном факте – атмосферное давление постоянно и практически неизменно, поэтому для любого атмосферного мотора есть предел мощности, превысить который очень сложно и дорого, а зачастую – просто невозможно.

Как и с чего начать подготовку автомобиля к дрифту?
Как и с чего начать подготовку автомобиля к дрифту? (5 фото)

Как и с чего начать подготовку автомобиля к дрифту?

Скорее всего с выбора автомобиля. Если вы хотите пойти легким путем, то выбирайте автомобиль изначально пригодный для езды в заносе. То есть с развесовкой близкой к идеальной, задним приводом и достаточной мощностью. Для примера можно привести такие популярные автомобили как Nissan Silvia, Mazda RX-7, Toyota Mark2, BMW M3, M5, Nissan Skyline, Subaru Impreza. Конечно, для дрифта подходит любой заднее приводной автомобиль, либо полноприводной с механически удаленным передним приводом, и при желании Вы сможете построить дрифт-кар из чего захотите.

1. Выбор кузова.

При конкретном выборе вашего будущего дрифт-кара советуем обратить особое внимание на состояние кузова. Выбирайте максимально свежий и крепкий кузов. Во-первых, Вы потратите время и деньги на доработку кузова, а не его ремонт, а во-вторых, целый кузов всегда крепче и меньше подвержен коррозии, чем даже идеально сваренный и восстановленный.

2. Доработка кузова.

В основном все доработки сводятся к установке каркаса безопасности, облегчению (путем вырезания лишнего железа), очищению кузова от штатной шумоизоляции, удалению ненужных элементов салона: задние сиденья, полка багажника и т.д. Также не помешает проварка всех кузовных швов дополнительными точками, что положительно повлияет на жесткость всего кузова.

Далее борьба с лишним весом требует замены крыльев, капота, крышки багажника на стеклопластиковые (при наличии хорошего спонсора можно и на карбоновые). Все стекла, кроме лобового, меняем на стекла из поликарбоната (рекомендуемая толщина 3мм). При грамотном подходе Вы сможете уменьшить вес машины на 10-20%, что очень положительно скажется на управляемости.

3. Подвеска.

В первую очередь должна быть жесткой и низкой. Рекомендуем выбрать комплект койловеров (coil-over - регулируемый по высоте и/или жесткости узел подвески, состоящий из стойки с регулируемой по высоте нижней чашкой пружины и самой пружины) с максимально большим выбором регулировок. У каждого производителя подвески имеются такие модели: Bilstein – B16, Koni – Coil-Over kit, H&R – RSS Club Sport Coil Overs, Ultra Low Coil overs, KW – variant 1,2,3, Eibach – Multi-Pro-R1,R2, Tein – Super Street, Super Drift, APEXi – S1, N1, а также D2, K-sport, XYZ и т.д. Ознакомиться с топовыми моделями для дрифта вы можете в любом каталоге спортивных и тюнинговых запчастей. Обратите внимание, что верхние опоры стоек желательно выбирать с шарнирным соединением (ШС) - это очень положительно влияет на управляемость ввиду отсутствия резиновых элементов. Но удары подвески по кузову в этом случае будут ощущаться весьма и весьма остро.

Рычаги желательно заменить на регулируемые с замененными на ШС сайлент-блоками. Если такой возможности нет, то хотя бы поменять на свежие резиновые сайлент-блоки, а еще лучше - на жесткие полиуретановые.

Также положительно скажется на управляемости установка растяжек стоек подвески и более жестких стабилизаторов поперечной устойчивости.

4. Рулевое управление.

Необходимые доработки рулевого управления связаны с отзывчивостью автомобиля на Ваши действия рулем и максимально возможным углом выворота колес. Острота рулевого управления зависит от степени доработок подвески, установленного размера колес, профиля и состава резины, а также конструкции системы рулевого управления. Если Ваш автомобиль оснащен рулевым редуктором, то, скорее всего, его доработка заключиться лишь в ремонте и регулировке, либо в замене на рулевую рейку. Если Ваш автомобиль уже оснащен рулевой рейкой, то Вам необходимо найти рейку с минимальным количеством оборотов рулевого колеса от упора до упора, что позволит машине более резко реагировать на Ваши действия и облегчит работу рулем при перекладках. Далее, доработке подвергаются рулевые наконечники и поворотные кулаки, что позволит вам увеличить угол поворота колес, а следственно и угол заноса. И помните самую важную вещь: рулевая система должна быть всегда в идеальном состоянии, не иметь люфтов и прочих признаков усталости рулевой. Все резинки должны быть своевременно заменены, сход-развал - отрегулирован.

5. Мотор.

Для начала рекомендуется учиться с маломощным мотором, чтобы понять какая мощность необходима. Ну, и чтобы не убиться раньше врмени. В дальнейшем примерный расчет мощности – это 250-300 (?) л.с. на тонну веса. Характер мотора должен позволять вам срывать машину в занос и поддерживать его с минимально низких оборотов. Это характер атмосферных моторов с большим объемом, например, S38B38 от БМВ М5, либо моторов с системой twin turbo, например, 1JZ-GTE, 2JZ-GTE от Toyota Chaser Tourer V и Toyota Supra; RB26DETT от Nissan Skyline GTR, отличный легкий турбированный мотор - SR20DETT от Nissan Silvia S15. Так что при постройке или выборе мотора делайте упор на его крутящий момент на низких и средних оборотах.

Далее Вы столкнетесь с проблемой перегрева или даже закипания масла и охлаждающей жидкости. Начать следует с установки качественных дополнительных датчиков: Febi, APEXi, GReddy, HKS, Siemens VDO (а для отечественных авто прекрасным бюджетным решением станут приборы и датчики от ВАЗ-2106, УАЗ и т.д.), которые вовремя предупредят Вас об опастности. Ну, а чтобы окончательно обезопасить себя от этого, необходимо установить более производительный радиатор охлаждающей жидкости. В случае оснащения автомобиля системой охлаждения вентилятором с термомуфтой, рекомендуем заменить ее на электровентиляторы. В систему масляного охлаждения необходимо установить масляный радиатор (oil cooler), если не исключаете эксплуатацию в холодное время – не забудьте и о масляном термостате или ручной заслонке.

Многие дрифтеры сталкиваются с еще одной проблемой – масляное голодание. Решается либо установкой поддона с противоотливными стенками, либо переливом масла выше максимального уровня на 1-2 литра (способ довольно старый и простой). Не бойтесь за течь сальников, а если даже и потекут – то их периодическая замена обойдется вам намного дешевле ремонта мотора.

Можете оснастить двигатель специальным поперечным амортизатором – он сбережет ваши подушки двигателя при работе педалью газа в заносе, резких стартах с места и при торможении двигателем.

6. Сцепление.

Сцепление в дрифтинге считается расходником. Советуем подбирать его исходя из личных предпочтений. Если стандартное сцепление позволяет реализовывать мощность мотора, то вероятнее всего, что его переодическая замена каждый сезон обойдется дешевле покупки дорогостоящего двухдискового комплекта. В случае пробуксовки стокового сцепления или частого его перегрева, меняйте его на керамику – одно- либо двухдисковую, в зависимости от степени доработок двигателя и Вашего бюджета. Но вместе со сцеплением не спешите приобретать облегченный маховик – скорее всего он сделает характер машины более нервным - хорошо подумайте, нужно ли Вам это при поддержании заноса.

7. Редуктор заднего моста.

Что конечно же необходимо для занятия дрифтингом – так это блокировка дифференциала. Возможно, что Ваш автомобиль уже с завода оснащен блокировкой, и даже позволяет обоим Вашим колесам участвовать в заносе, но эта блокировка не всегда подходит для дрифта высокого уровня. Вы, конечно, можете раскошелиться и приобрести дорогостоящую блокировку (например, 1,5 Way, 2 Way, OBX), но есть способ сберечь хорошую сумму денег – это заварить дифференциал. Вопреки распространенным мнениям, езда на заваренном диффере не принесет проблем, а ощущения при езде сравнимы с блокировкой типа 2 way.

8. Резина и диски.

Устанавливайте как можно более легкие диски с низкопрофильной резиной. Спереди рекомендуем установить слики либо полуслики, это во многом поможет вам избавиться от недостаточной поворачиваемости в случае ее присутствия. Сзади подбирайте тот типоразмер резины, на котором Вам управлять машиной в заносе будет легче, но помните, что при перекладках и ускорении в заносе вам необходимо хор

Ремонт кар­б­юр­ат­о­ра: несколько советов
Ремонт кар­б­юр­ат­о­ра: несколько советов

Ремонт кар­б­юр­ат­о­ра: несколько советов
Починка карбюратора требует немало знаний и максимальной сосредоточенности. Необходимо работать очень аккуратно, потому что в карбюраторе полно «нежных» деталей. Давайте разберём самые распространённые поломки и пути их устранения.

Сетчатый фильтр.
С сетчатым фильтром может приключиться две беды – он или ломается, или засоряется. Для того, чтобы узнать наверняка, нужно выкрутить пробку топливного фильтра и вынуть этот самый сетчатый фильтр. Если он в рабочем состоянии, но очень грязный, промойте его бензином или продуйте. Если на фильтре или патрубке подвода бензина есть видимые повреждения – необходимо их заменить.

Пусковое устройство.
Обыкновенное пусковое устройство, в случае загрязнения или просто для профилактики, можно промыть обычным бензином или ацетоном. Если есть возможность, можете также продуть его сжатым фокусом. Нужно помнить, что с автоматом или полуавтоматом такой фокус не пройдёт.

Негерметичность соединений в карбюраторе.
Нарушения герметичности происходят в выпускном и впускном трубопроводах, корпусе дроссельных заслонок или местах соединения деталей карбюратора. Обнаружить место подсоса воздуха можно при помощи мыльной пены. Проблемы с впускным трубопроводом также выказывают следы копоти вокруг места неплотного соединения или тонкая плёнка топлива в причинном месте.

Точно определить место подтекания топлива можно, обтерев насухо подозрительные места. Если утечка есть, в проблемном участке быстро образуется плёнка топлива.

Если сбои происходят из-за подсоса в месте соединения нижнего фланца карбюратора и впускного трубопровода – просто подтяните гайки. Этим нехитрым способом можно решить проблемы и в других частях агрегата. Подтягивать крепления нужно аккуратно и равномерно для того, чтобы не перекосился фланец карбюратора.

Бывает, что подтяжка гаек крепления не помогает избавиться от нарушений герметичности. В таком случае нужно почистить место подсоса и заменить в нём прокладку.

Ускорительный насос.
Если в ускорительном насосе что-то сломалось, нужно только менять. Детали этого механизма ремонту не подлежат. Исправный насос можно продуть или промыть в бензине. Также стоит проверить, свободно ли перемещаются рычаги и детали диафрагмы. Уделите отдельное внимание шарику в распылители – ничто не должно мешать свободе его движения.

Диафрагма экономайзера.
В моделях, оснащённых экономайзером, на диафрагме не должно быть повреждений. Если длина толкателя слишком короткая, замените его вместе с диафрагмой.

Через сколько менять ремень ГРМ?
Через сколько менять ремень ГРМ?

Через сколько менять ремень ГРМ?

Немного теории. Ремень ГРМ (или ремень ГазоРаспределительного Механизма), неотъемлемая часть звена между каленвалом и распределительным валом (валами у 16 клапанного двигателя). Каленвал вращаясь, по средствам ремня ГРМ вращает распределительный вал, который в определенной последовательности открывает или закрывает клапана. Тем самым обеспечивая впрыск топлива или выход отработанных газов. Ремень ГРМ, является «сухим» соединительным звеном в цепочке каленвал – распредвал. То есть он находится снаружи двигателя (обычно закрыт кожухом) и не смазывается моторным маслом, в отличие от цепи, которая находится внутри двигателя и смазывается моторным маслом. Это теория.

Как становится понятно, на ремень ГРМ, действуют внушительные силы, он изнашивается. Поэтому время от времени его нужно менять. Если этого не сделать, то можно нарваться на серьезные проблемы. Ремень попросту порвется, в двигателе получится дисбаланс, есть шанс погнуть клапана. Хотя современные двигатели от этого застрахованы, они имеют ямки на поршнях двигателя.

И вот тут то возникает много вопросов, основной – через сколько менять ремень ГРМ?

Скажу так – если у вас новая гарантийная машина, то вы даже и знать не будете, когда его меняют. Просто у вас все сменят по гарантии. Обычно это либо 40 – 50 000 для наших автомобилей. Или же 60 – 70 000 для импортных. НА моем, FORD FUSION ремень ГРМ проходил 150 000 километров.

Однако если у вас уже нет гарантии, и вы не знаете когда в последний раз, менялся ремень ГРМ (автомобиль покупался у другого хозяина). То вопрос – через сколько менять ремень ГРМ, звучит по-другому.

Я бы поступил так!

1) Постарался бы узнать у предыдущего хозяина, менялся ли вообще ремень ГРМ? Если да то примерно когда. Если пробег на нашем отечественном автомобиле уже со смененным ГРМ больше 30 000 километров, то нужно менять, на иномарке сменил бы через 50 – 60 000. Также если ремень не менялся нужно срочно менять, при условии что пробег автомобиля большой.

2) Где менялся ремень ГРМ, на официальной станции или же у дяди Васи в гараже. Это тоже важно. Объясню почему. Если вы меняете у официалов, то они, как правило, ставят оригинальные запчасти, а соответственно ремень ГРМ, будет также оригинальным. Он проходит достаточно долго (вспомнить даже мой FORD FUSION – оригинал проходил 150 000 километров).Опять же они дадут гарантию. Если вы меняли в гараже у дяди Васи, тут 50 на 50, могут поставить хороший ремень ГРМ, и он также будет ходить долго. Могут посоветовать другой ремень более дешевый, но вот только, сколько он ходить будет никто не знает. По аналогии скажу – что у нас на рабочей ВАЗ 2111 ремень ГРМ летит каждые 10 000 километров, потому как ставят не понятно какие запчасти.

3) Даже если у купленного вами автомобиля сменен ремень ГРМ 10 – 15 000 километров назад. Он запросто может порваться, особенно это касается наших автомобилей, на иномарках все-таки ремни ходят дольше. Почему спросите вы? ДА потому что многие автомобилисты особенно зимой, прогревают двигатели на стоянках например, иногда прогрев двигателя доходит до 10 – 15 минут. Спидометр автомобиля стоит, а двигатель работает. Поэтому в наших широтах, со сложными дорожными условиями и нашими зимами, ремень ГРМ нужно менять чаще. Допустим, производитель заверяет, что ремень ГРМ проходит 60 000 километров, допустим на нашей Лада Приора. Смело делим пробег на два и получаем 30 000 километров, это похоже на правду. На иномарках также, только там производители заявляют 100 – 120 000 километров, тут можно делить не на два, а отнимать 30 – 40 %, то есть меняет примерно через 60 – 70 000 километров.

Думаю, понятен ход моих мыслей. Если у вас стоит оригинальный ремень ГРМ, и производитель заявляет, что вы можете проехать 120 000 километров, лучше его поменять через 80 000 километров. Вам будет спокойнее. Спишите 40 000 на износ и зимние прогревы. Также помните, на ремне ГРМ экономить не стоит, особенно если у вас на поршнях нет «ямок» в случаи обрыва ГРМ. Тогда вы попадете на дорогостоящий ремонт. Покупайте только проверенные ремни, те которые ставит завод на свои автомобили. Думаю я вам ответил на вопрос – через сколько менять ремень ГРМ.

Полезные советы
Полезные советы

Полезные советы

Езда на высоких/низких оборотах. Можно или нельзя?

Каждый раз водители задают вопрос: на каких оборотах лучше ездить на автомобиле, на высоких или на низких?

И так, двигатели внутреннего сгорания делятся на 2 типа:

1. Тихоходные (например, москвич 2141)

2. Высокооборотистые (от классики- до приоры и гранты)

Первый тип двигателя – тихоходный, рассчитанный на тягу, а не на раскручивание двигателя для достижения максимальной скорости. Он похож на дизельный тип. Максимальный крутящий момент достигается на низких оборотах (для бензинового типа) (около 2500 об./мин.)

У высокооборотистых силовых агрегатах, пик крутящего момента приходится в диапазоне 3500-4500 об./мин. Следовательно, машина лучше тянет на высоких оборотах.

К чему приводит езда на низких оборотах?

К чему все эти цифры. Дело в том, что высокооборотистый тип двигателя, при работе на низких оборотах испытывает:

1. Масляное голодание. Масляный насос плохо подает масло на небольших оборотах, а в это время под большой нагрузкой работают подшипники (вкладыши коленчатого вала). Из-за низкого давления масла, оно, плохо смазывает трущие детали двигателя и со временем начинают тереться “металл об металл”, что может привести к перегреву и заклиниванию основных механизмов силового агрегата.

2. Образуется нагар в камере сгорания. Бензин сгорает не полностью, засоряются свечи, форсунки.

3. Распредвал работает под нагрузкой. Начинают стучать пальцы поршней.

4. Происходит детонация, т.е. бензин взрывается раньше, чем надо (самовоспламенение), большая нагрузка на поршневую группу. Двигатель дергается, больше греется.

5. Увеличивается нагрузка на трансмиссию. Коробка плохо смазывается и работает под нагрузкой из-за езды в натяг.

6. Увеличивается расход топлива. На низких оборотах, чтобы ускорится, педаль “газа” вдавливается больше чем, если бы двигатель был раскручен, следовательно, дополнительное обогащение смеси – отсюда и больший расход.

7. Малая приемистость на дороге. В случаи возникновения опасной ситуации, невозможно быстро ускорится.

Я Вас наверно напугал, теперь, сложилось впечатление, что нужно ездить только на высоких оборотах. Нет, на высоких, тоже нагрузка на все узлы автомобиля (сцепление трансмиссия, расход большой). Самая приемлемая езда на средних оборотах. А вообще нужно слушать двигатель, чувствовать тягу. Если спускаться с горки (“газ ” отпущен), то обороты 1500-2000 об/мин не вредны, т.к. силовой агрегат не работает “внатяг”.

Основные факторы езды на средних оборотах (средние обороты в диапазоне (2800-4500об/мин))

Двигатель работает без нагрузок;
Легко может набрать скорость;
Меньше нажимается педаль акселератора, следовательно, и меньше расход топлива;
Топливо сгорает полностью, не образуется нагар в цилиндрах ;

Для того чтобы двигатель был в “форме”, иногда полезно раскручивать его до максимальных оборотов, чтобы он самоочистился от нагара в цилиндрах, так сказать “прочихался”.

Многие говорят: “вот на холостом ходу двигатель нормально же смазывается, значит можно и на них ездить или чуть выше ХХ”.

Не стоит забывать, что на ХХ двигатель работает без нагрузок. Во многих книжках для эксплуатации автомобиля написано, что нежелательно работы двигателя, больше 15-20 мин на ХХ.

Катайтесь аккуратно, не насилуя двигатель, и тогда он будет служить Вам долгие годы.

Машина на газе: плюсы и минусы
Машина на газе: плюсы и минусы

Машина на газе: плюсы и минусы

Почему некоторые автовладельцы решают перевести свой автомобиль на газ? Это объясняется прежде всего существенной экономией денежный средств. Бензин дорожает с каждым днем, а вот на газ цена существенно не меняется. Действительно ли можно сэкономить на автомобиле, если его перевести на газ? Несомненно.

Плюсы автомобиля на газе

- Двигатель автомобиля работает значительно «мягче», чем на 92-95 бензине.
- Выхлопные газы, машины работающей на газе, значительно безопасней для экологии.
- В двигателе масло служит дольше, так как оно не насыщается продуктами сгорания бензина. Поэтому и замена масла у газового автомобиля проходит реже.
- Если использовать бензин и газ вкупе, то пробег можно увеличить без дозаправки в два раза.
- Ну и мы уже не раз писали статьи про то, как защитить автомобиль от кражи бензина, так вот, газ своровать нельзя по определению (если только баллон вытаскивать).
- Конечно, ездить на газе экономно — это докажут все автовладельцы, имеющие газовые автомобили. Они ни за что не променяют свое авто на бензинового собрата.
- Единственное, установка ГБО (газобаллонное оборудование) на автомобиль стоит не малых денег, но оно быстро окупит себя.
- Специалисты рекомендуют использовать газ вместо бензина на больших автомобилях, у которых расход топлива велик. Тогда экономия будет разительна. Также не рекомендуется устанавливать ГБО на те авто, у которых пробег свыше 100000 километров.
Как видите, плюсов езды на газе достаточно. Далее поговорим про минусы машин на газе.

Минусы автомобилей на газе

Установка ГБО не дешевое занятие. Чтобы перевести авто на ГБО нужно выполнить ряд регулировок: увеличить зазор клапанов, откорректировать угол установки опережения зажигания и много другое.

Кроме того, газовый баллон занимает достаточно много места в багажнике и добавляет лишние килограммы к весу автомобиля. Но опытные автовладельцы машин на газу говорят, что это никак не тяготит в эксплуатации автомобиля.

Тяга автомобилей на газу ниже, чем у бензиновых собратьев.
Многие боятся устанавливать ГБО, опасаясь газа. Конечно, утечку газа можно и не заметить сразу, плюс при возникновении ДТП есть риск, что баллон взорвется. Но давайте посмотрим на статистику, много ли вы знаете случаев, когда бы взрывалась машина на газу?
Летом двигатель автомобиля на газе греется интенсивнее, так как температура сгорания газа выше, чем у бензина. Поэтому, у газовых авто система охлаждения требует усовершенствований.

Также, когда требует заправить автомобиль на газу, особенно в дальней поездке, то заправки с газом можно и не найти.

Есть мнение, что двигатель на газе страдает сильнее, чем двигатель, работающий на бензине, поэтому капитальный ремонт делается чаще.
И напоследок, мы считаем, что за газовыми автомобилями будущее. К примеру, в странах Евросоюза к 2020 году, более десяти процентов автомобилей хотят перевести на газ.

Топливная система ( система питания топливом) предназначена для пит...
Топливная система ( система питания топливом) предназначена для пит... (5 фото)

Топливная система ( система питания топливом) предназначена для питания двигателя автомобиля топливом, а также его хранения и очистки.

Топливная система автомобиля имеет следующее устройство:

топливный бак;
топливный насос;
датчик уровня топлива;
топливный фильтр;
топливопроводы;
система впрыска.

Топливная система бензинового и дизельного двигателей имеет, в основном, аналогичное устройство. Принципиальные отличия имеет система впрыска.

Топливный бак предназначен для хранения запаса топлива, необходимого для работы двигателя. Топливный бак в легковом автомобиле обычно располагается в задней части на днище кузова. Емкость топливного бака обеспечивает в среднем 500 км пробега конкретного автомобиля. Топливный бак изолирован от атмосферы. Вентиляцию топливного бака производит система улавливания паров бензина.

Топливный насос подает топливо в систему впрыска и поддерживает рабочее давление в топливной системе. Топливный насос устанавливается в топливном баке и имеет электрический привод. При необходимости используется дополнительный (подкачивающий) насос (не путать с топливным насосом высокого давления системы впрыска дизельных двигателей и системы непосредственного впрыска).

В топливном баке вместе с насосом устанавливается датчик уровня топлива. Конструкция датчика включает поплавок и потенциометр. Перемещение поплавка при изменении уровня топлива в баке приводит к изменению положения потенциометра. Это, в свою очередь, приводит к повышению сопротивления в цепи и уменьшению напряжения на указателе запаса топлива.

Очистка поступающего топлива осуществляется в топливном фильтре. На современных автомобилях в топливный фильтр встроен редукционный клапан, регулирующий рабочее давление в системе. Излишки топлива отводятся от клапана по сливному топливопроводу. На двигателях с непосредственным впрыском топлива редукционный клапан в топливном фильтре не устанавливается.

Топливный фильтр топливной системы дизельных двигателей имеет несколько иную конструкцию, но суть его работы остается прежней. С определенной периодичностью производится замена топливного фильтра в сборе или, только, фильтрующего элемента.

Топливо в системе циркулирует по топливопроводам. Различают подающий и сливной топливопроводы. В подающем топливопроводе поддерживается рабочее давление. По сливному топливопроводу излишки топлива удаляются в топливный бак.

Система впрыска предназначена для образования топливно-воздушной смеси за счет впрыска топлива.

Работа топливной системы осуществляется следующим образом. При включении зажигания топливный насос закачивает топливо в систему. При прохождении через топливный фильтр происходит его очистка. Далее топливо поступает в систему впрыска, где происходит распыление и образование топливно-воздушной смеси.

На некоторых автомобилях рабочее давление в топливной системе создается при открытии водительской двери (включается топливный насос)

Компания BMW рассекретила 3-цилиндровые моторы
Компания BMW рассекретила 3-цилиндровые моторы (3 фото)

Компания BMW рассекретила 3-цилиндровые моторы
Появление первых переднеприводных моделей BMW уже не за горами, а потому немецкий автопроизводитель решил рассекретить новые трехцилиндровые моторы, которыми и будут оснащаться подобные автомобили. Семейство трехцилиндровых дизельных и бензиновых моторов будет также использоваться на следующем поколении MINI, заднеприводных версиях 1- и 3-Series, а также новом гибридном спорткаре i8. Характерными особенностями новых моторов станут увеличенная экономичность и сниженный расход топлива.
Дизельные и бензиновые моторы будут иметь три цилиндра и рабочий объем 1,5 литра. Кроме того они будут строиться по одинаковой технологии, так как имеют до 40% общих деталей. Силовые агрегаты получают алюминиевый блок цилиндров, систему изменения фаз газораспределения Valvetronic, турбокомпрессор, непосредственный впрыск топлива, повышенную степень сжатия топлива и увеличенный ход поршня.

1,5-литровый бензиновый мотор B38 сможет выдавать мощность 120-222 л. с. и крутящий момент 180-240 Нм, в свою очередь 1,5-литровый дизель B37 способен развивать 80-180 л. с. и 225-330 Нм. Экономия топлива по сравнению с современной «четверкой» N20 составит от 5 до 15%.

•Тюнинг и форсировка двигателя
•Тюнинг и форсировка двигателя

•Тюнинг и форсировка двигателя

Автолюбители, которые занимаются тюнингом двигателя разделяются на два лагеря. Первым, нужно всего лишь немного поднять мощность мотора своей машины, т.к. их не устраивает разгонная динамика или другие характеристики мотора. Обычно они делают тюнинг двигателя своими руками, ведь перечень работ по форсировке минимален. Он включает в себя либо перепрошивку блока управления ЭБУ, либо замену некоторых деталей мотора на спортивные. В итоге, мощность двигателя повышается на 10-15 процентов.

Другие автолюбители, подходят к тюнингу мотора очень основательно. Они заменяют все детали двигателя на спортивные, устанавливают турбины и растачивают двигатель. Мощность такого двигателя зависит от потенциала мотора-донора или от кошелька владельца. Ведь бывает, что мощность мотора поднимают на 100 "лошадок", а бывает и до 1000 лошадиных сил. Тут уж все зависит от задач, для которых предпринимался тюнинг двигателя.

•Что такое спортивный распредвал?

Спортивный распредвал дает существенное увеличение мощности двигателя для любого автомобиля. Он завоевал огромную популярность, как среди обычных автолюбителей, так и среди автоспортсменов. Спортивный распредвал может поднять мощность двигателя, как в области верхних оборотов двигателя, так и в области нижних.

•Что такое кованые поршни? Их особенности

При тюнинге двигателя желательно применять кованые поршни, если вы надеетесь на хороший результат. Кованые поршни предназначены для гоночных или спортивных автомобилей. Если вы используете автомобиль для перемещения из одной точки в другую, то кованными поршни будут для вас лишней и дорогой деталью при тюнинге двигателя.

Воздушный фильтр нулевого сопротивления. Для чего нужен "нулевик"?

Воздушный фильтр нулевого сопротивления применяется при грамотном тюниге двигателя любого автомобиля. Они получили массовое распространение благодаря своей доступности и низкой стоимости. Еще одно неоспоримое преимущество "нулевиков" - это красивый внешний вид.

Увеличение объема двигателя - расточка блока цилиндров
При серьезном тюнинге двигателя широко распространен метод увеличения мощности - расточка блока цилиндров. Данный метод положительно влияет на увеличение, как мощностных характеристик двигателя, так и моментных. Он получил свое распространение из-за своей простоты, а следовательно и дешевизны проводимых работ.

•Модернизация электроники двигателя

Тюнинг двигателя обычно не ограничивается лишь заменой стандартных деталей на спортивные или гоночные. Обычно при тюнинге двигателя также модернизируют его электронное управление. Ведь толку от замены деталей двигателя может быть мало, если не позаботится о моторной электронике, ограничивающей потенциал двигателя.

•Шатуны для форсированного двигателя

Шатуны для спортивного мотора должны быть прямолинейны. Любое их отклонение от прям мощность форсированного двигателя. Причина в том, что при кривизне тюнинг-шатуна, он будет препятствовать движению поршней двигателя, тем самым увеличивая трение.

•Разрезная шестерня распредвала

Опытные автолюбители знают, что при оптимальном соотношении фаз газораспределения, достигается максимальная мощность двигателя. Чтобы добиться нужного положения распредвала относительно коленвала применяется разрезная шестерня распредвала, которая "перекочевала" на гражданские автомобили из автоспорта.

•Перепускной клапан турбины

Перепускной клапан предназначен для понижения давления в турбине, при избытке поступающих выхлопных газов. Лишние выхлопные газы, он отводит обратно в выхлопную систему. Наиболее популярным среди автолюбителей стал перепускной клапан фирмы HKS.

Системы зажигания для спортивного автомобиля
Существует большое количество способов модернизации системы зажигания для спортивного автомобиля. Некоторые, заменяют штатную контактную систему зажигания на бесконтактную или на микропроцессорную. Другие автолюбители, устанавливают дополнительные блоки управления Октан, Искра или Пульсар.

Механический наддув.
Механический наддув. (5 фото)

Механический наддув.

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.Существует два вида механических нагнетателей: объемные и центробежные.
Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.
Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.
Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Диагностика работы двигателя по состоянию свечей.
Диагностика работы двигателя по состоянию свечей. (8 фото)

Диагностика работы двигателя по состоянию свечей.

На фото №1 изображена свеча, вывернутая из двигателя работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

На фото №2 типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.

На третьем фото наоборот пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов. Юбка центрального электрода свечи изображенной на фото

№4 имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительно использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

Фото № 5. Свеча имеет ярко выраженные следы масла особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Свеча на фото № 6 вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешенного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото № 7 это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синие дымление, запах выхлопа похож на мотоциклетный. Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, не вспоминайте о свечах только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Но и вы в свою очередь не забывайте с каждой заменой масла или в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего, это регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7. Так же я бы рекомендовал менять свечи местами, это связано с разными температурными режимами работы цилиндров.

Создано устройство, внутри которого фазовая скорость световых волн ...
Создано устройство, внутри которого фазовая скорость световых волн ...

Создано устройство, внутри которого фазовая скорость световых волн бесконечна

Физики Альберт Полман из Института атомной и молекулярной физики (Нидерланды), Надер Энжета из Пенсильванского университета (США) и их коллеги создали и испытали в лаборатории устройство, фазовая скорость распространения света в котором бесконечна.

Свет распространяется с так называемой световой скоростью только в вакууме. В воздухе, не говоря уже о менее прозрачных средах, эта скорость ниже. Её соотношение со световой в вакууме даёт показатель преломления в той или иной среде. Обычно он выше единицы: попросту говоря, свет в средах медленнее самого себя только сферического и в вакууме.

Но, как и у каждого хорошего правила, у этого тоже есть исключения. У метаматериалов показатель преломления может быть ниже единицы, и значительно. Хуже того, теперь учёным удалось создать такой метаматериал, в котором показатель преломления равен нулю.

А как же скорость света? Здесь нужно уточнить, какая, ибо, строго говоря, скорость распространения электромагнитных волн в среде, обладающей световой дисперсией, бывает фазовая и групповая. Фазовая скорость показывает соотношение частоты и длины волны света в прозрачной среде (λ = c/ν), демонстрируя скорость распространения именно волн той или иной частоты. Групповая же равна скорости распространения «группы волн» — то есть конкретной группы волн с довольно узким спектром. И первая, и вторая могут быть выше световой в вакууме, однако только таким образом, чтобы с их помощью нельзя было переносить информацию. Например, если групповая скорость световых волн выше с, то передний фронт импульса (данной группы волн) всё равно движется со скоростью меньше с, что спасает теорию относительности.

С фазовой скоростью, о которой идёт сейчас речь, всё примерно так же: монохроматическая (синусоидальная) волна бесконечна в пространстве-времени и не может быть модифицирована. Следовательно, с её помощью нельзя передать информацию. Следовательно... В общем, ОТО продолжает цвести и пахнуть, даже если фазовая скорость сверхсветовая.

Однако нынешний результат до некоторой степени первый в своём роде: бесконечная фазовая скорость света пока не достигалась ни разу.

Устройство состоит из прямоугольной плоскости с оптически прозрачной средой (стеклом) внутри из изолирующего диоксида кремния толщиной в 85 нм и длиной в 2 000 нм, заключённой в оболочку из серебра, которую свет не может преодолеть. В итоге получился вроде бы банальный волновод. Когда в него попадает свет, пик и провалы его волн накладываются, а на частоте выше частоты среза свет вообще перестаёт распространяться.

А вот на самой частоте среза всё гораздо интереснее. На ней весь волновод кажется наполненным светом; вместо волн с равномерно распределёнными пиками свет здесь состоял из пиков, двигающихся с бесконечно высокими скоростями, что просто не давало зарегистрировать «провалы».

Что за толк от такого устройства? Дело в том, что волны света на выходе из него являются полностью синхронизированными, и формой фазового фронта такого света можно управлять в очень широких пределах — достаточно изготовить из такого волновода своего рода антенну. Таким образом, из него можно сделать средство передачи информации от одной оптической микросхемы к другой (или внутри одной и той же). Более того, набор таких наноустройств может создать такой метаматериал, который в целом будет иметь нулевой показатель преломления. Его конкретные приложения могут быть самыми разными, подобно метаматериалам с отрицательным показателем преломления, отмечают исследователи, но на пути к его созданию лежит много практических трудностей…

Механический нагнетатель.
Механический нагнетатель. (2 фото)

Механический нагнетатель.

Работа двигателя внутреннего сгорания (ДВС) построена на том, что топливо должно быть замешено с необходимым количеством окислителя, т. е. кислорода. Это обеспечит полное и эффективное сгорание горючей смеси и позволит достичь максимально возможной мощности. Больше сгорит – больше мощность. Кислорода в воздухе по объему всего 21%, а по массе 23% (это на уровне моря, при определенных давлении и температуре). Для нормальной работы двигателя пропорции смеси топливо–воздух принимаются приблизительно 1:14,7. Если прибавить к стандартному давлению в одну атмосферу, к примеру, еще одну, то получим в 2 раза больше воздуха, а значит, и кислорода, поступающего в цилиндры. Стало быть, мы должны получить от мотора в 2 раза больше мощности. Двигатель объемом 1,5 л при давлении наддува чуть более атмосферы практически эквивалентен трехлитровому «атмосфернику». Это, конечно, грубая арифметика, но идея именно такова. И, кстати говоря, такой прирост отнюдь не предел.

Можно пойти по пути увеличения объема моторов. Больше рабочий объем цилиндра – больше топливовоздушной смеси со всеми вытекающими отсюда последствиями. Так делали американские производители. Огромные, высокообъемные моторы с неимоверным потреблением горючего, но впечатляющим крутящим моментом. В Европе, и особенно в Японии, делали маленькие, компактные и экономичные двигатели. Но мощность, тем не менее, была также востребована покупателями автомобилей. Наверное, это была одна из причин, почему именно на старом континенте появились первые разработки нагнетателей.

История

В качестве первопроходцев, разработавших автомобильные двигатели с наддувом, можно упомянуть такие компании, как Mercedes-Daimler, Fiat, Sunbeam, Alfa Romeo. Сама идея принудительного нагнетания воздуха в цилиндры была предложена вскоре после изобретения самого ДВС. Уже в 1885 г. Готтлиб Даймлер получил немецкий патент на нагнетатель. Идея заключалась в том, что некий внешний вентилятор, насос или компрессор нагнетает в двигатель увеличенный заряд воздуха. В 1902 г. во Франции Луис Рено запатентовал проект центробежного нагнетателя. Было выпущено некоторое количество автомобилей, но затем все работы в данном направлении свернули. Принцип действия турбонагнетателя, работающего на энергии выхлопных газов, впервые описал и запатентовал швейцарский изобретатель Альфред Бюхи еще в 1905 г., но и здесь технологии того времени притормозили внедрение подобных устройств. Братья Рутс разработали объемный нагнетатель еще в 1859 г. Эти роторно-шестеренчатые компрессоры теперь так и называются – компрессоры типа «roots». На автомобилях устройства подобного типа появились в 20-е годы прошлого века благодаря компании Mercedes. Винтовой компрессор был разработан в 1936 г. Патент получил Альф Лисхолм (Alf Lysholm) – главный инженер SRM (Svenska Rotor Maskiner AB).

Тогдашний уровень развития технологий не способствовал распространению подобных устройств, но сейчас они довольно популярны. Были и другие типы нагнетателей. Со временем они естественным образом разделились на механические (с приводом от коленвала или другим способом) и турбо (с приводом от выхлопной системы). Последние, хоть и имеют общие корни и назначение, все же довольно обособленная ветвь развития нагнетателей. Далее в этой статье речь пойдет о нескольких основных типах механических нагнетателей.

Центробежный нагнетатель

Подобные нагнетатели в тюнинге получили в настоящее время наибольшее распространение. По своей конструкции они наиболее близки к турбонаддуву, поскольку имеют одинаковый принцип нагнетания воздуха. Разняться лишь способы привода. Работа осуществляется следующим образом.

Основная деталь центробежного нагнетателя – рабочее колесо, или крыльчатка. Она имеет довольно сложную конусообразную форму. Лопатки крыльчатки играют самую главную роль. От того, насколько правильно они спроектированы и изготовлены, зависит результирующая эффективность всего нагнетателя. Итак, воздух, пройдя по сужающемуся воздушному каналу в нагнетатель, попадает на радиальные лопасти крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии кожуха, где имеется диффузор. Зачастую диффузор имеет лопатки (порой с регулировкой угла атаки), призванные снизить потери давления. Далее воздух выталкивается в окружной воздушный туннель (воздухосборник), который чаще всего имеет улиткообразную форму (воздухосборник, описывая окружность, постепенно расширяется в диаметре). Такая конструкция создает необходимое давление воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух поначалу движется быстро, и его давление мало. Однако в конце улитки русло расширяется, скорость воздушного потока понижается, а давление увеличивается. Так создается необходимый подпор для накачки цилиндров «спрессованной атмосферой».

В силу самого принципа работы у центробежного нагнетателя есть один существенный недостаток. Для эффективной работы крыльчатка должна вращаться не просто быстро, а очень быстро. Фактически производимое центробежным компрессором давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 тысяч об/мин и более, а для высоконапорных компрессоров дизелей они приближаются к цифре 200 тыс. об/мин. И поскольку привод осуществляется от коленвала посредством ременной передачи на шкив турбины, шум от такого устройства довольно сильный. Хотя многим именно этот характерный свист греет душу. Появились даже обманки, имитирующие звучание работающей турбины. Проблема шумности и ресурса элементов привода частично снимается введением дополнительного мультипликатора.

Здесь стоит упомянуть интересное решение компании Powerdyne. Внутри единого корпуса нагнетателя располагается дополнительная повышающая ременная передача. Она не требует обслуживания, смазки и рассчитана на пробег более 80 тыс. км. Это позволяет уменьшить передаточное число внешней, основной ременной передачи, чем снизить ее рабочие нагрузки.

Высокие рабочие обороты накладывают особые требования на качество используемых материалов и точность изготовления (учитывая огромные нагрузки от центробежных сил). К минусам самого принципа нагнетания можно также отнести некоторую задержку в срабатывании, хотя нужно отметить, что эта задержка не столь заметна, как у турбонагнетателей. И еще одно замечание. Как правило, центробежный нагнетатель дает прибавку на довольно высоких оборотах двигателя. Сначала давление нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает. Эта особенность делает центробежные нагнетатели наиболее пригодными для тех случаев, когда более важно поддержание высоких скоростей, а не интенсивность разгона.

Как было отмечено выше, центробежные нагнетатели очень популярны. Сравнительно низкая цена и, самое главное, простота установки способствовали тому, что компрессоры этого типа почти вытеснили другие, более дорогие и сложные типы. Особенно в сфере тюнинга. В настоящее время центробежные нагнетатели производятся рядом компаний. Вот лишь самые известные из них: Paxton Automotive, Powerdyne Automotive, ATI ProCharger, RK Sport, Vortech. Нагнетатели большинства производителей доступны и у нас, в России.

Навеяно историей про корпуса телевизоров, изготавливаемые с браком на итальянской линии: http://www.anekdot.ru/id/665209/
Вот говорят что только в России (СССР) могли привязать деталь станка веревкой, или накинуть валенок на термодатчик, чтобы обмануть автоматику и добиться-таки выполнения плана.
Наговаривают, наговаривают. Такое возможно и в одной из самых, не побоюсь сказать, техничных и педантичных стран мира - Германии.
Сам являюсь фанатом БМВ. Читал не так давно описание электронной системы управления двигателем (ЭСУД) мотора от BMW M5 1986-1995 годов выпуска. Эта М5 - очень современный для тех годов, и очень мощный и навороченный автомобиль, оснащенный всем, чем на тот момент была богата и горда немецкая автомобилестроительная отрасль.
Так вот, мощности и нужных параметров работы автомобиля немцы добились, и добились блестяще. До сих пор этот двигатель считается одним из лучших в своей области. Но! так как автомобиль был сертифицирован для использования на дорогах общего пользования, он должен был удовлетворять жестким экологическим требованиям на процент содержания вредных веществ в выхлопных газах. Но если зажать экологические параметры - ухудшатся параметры ездовые... что же делать?
Немецкий гений автомобилестроения вышел из ситуации с успехом. В мотор была добавлена автоматическая система впрыска воздуха в выпускной тракт (Air Injection System). Получается, что при работе автомобиля выхлопные газы разбавляются чистым воздухом. Соответственно, процент содержания вредных веществ резко снижается, и укладывается в нормы. А то что общее количество выбросов осталось прежним - так про это в законах не написано... Конечно же так нагло в рекламных проспектах никто этого не заявил. Было сказано что "подача дополнительного воздуха в выпускной тракт позволяет несгоревшим остаткам топлива догореть, уменьшая количество вредных выбросов". Однако, фактически - ничего там не сгорает в большинстве режимов, а реальное назначение системы - см. выше.
К чести немцев, нужно заметить, что в современных двигателях эта система упразднена и заменена на более современные и сложные. Правда, кто знает, не подобны ли они в своем действие той? :)
А вы говорите - совковое производство. Нормальное было производство, не хуже большинства. Любить надо свою Родину, другой нету.

Прочитать...
Как купить подержанный автомобиль в хорошем состоянии?
Как купить подержанный автомобиль в хорошем состоянии?

Как купить подержанный автомобиль в хорошем состоянии?

Итак, вы приняли решение, что в вашей семье должен появиться автомобиль, даже не имеет значения, с какой целью вы собираетесь приобретать его: для работы, для поездок в деревню или на отдых, как альтернативная замена надоевшему городскому транспорту. Главное, вы приняли решение купить авто.

Основным вопросом до покупки автомобиля будет являться наличие свободных средств. Учитывая экономическую ситуацию, а также сложности в получении ссуды в банке на приобретение нового автомобиля, единственным возможным вариантом остается приобретение подержанного авто. К покупке подержанного авто необходимо отнестись с особым вниманием, поскольку здесь дела обстоят намного сложнее, чем при покупке нового автомобиля в автосалоне. Какие особенности покупки подержанного авто есть, на что необходимо обращать внимание, где лучше приобретать автомобиль и многое другое в данной статье.

Прежде всего, обращаем ваше внимание на то, что на подобном рынке присутствует большое количество недобросовестных продавцов, которые пытаются «толкнуть» товар не самого лучшего качества: серьезная поломка, наличие комплектующих, замена которых в дальнейшем будет затруднительна, не чистые документы или полное их отсутствие и прочие причины.

Полной гарантии на покупку «чистого» автомобиля вам конечно же не предоставят, поэтому необходимо собственными силами определять чистоту авто и сделки в том числе.

Несколько пунктов, на которые стоит получить четкие ответы:

1. Уточните не находится ли автомобиль, который вы собираетесь приобретать в залоге. Если автомобиль находится в залоге у любых финансовых организаций, в таком случае при подаче судебного иска, суд может принять решение о возвращении автомобиля в собственность финансовых организаций. Для того, чтобы обезопасить себя в данной ситуации, потребуйте наличие технического паспорта на автомобиль (оригинал). Обязательно обращайте внимание на то, что все документы у продавца должны быть в оригинале.

2. Возраст автомобиля не менее важный пункт при совершении покупки. Не стоит покупать автомобили, которые продаются через небольшой промежуток времени после покупки. Как правило, продавец старается избавиться от некачественного авто. Если продавец владеет автомобилем по генеральной доверенности и принял решение его продать, в таком случае вы должны потребовать снятия автомобиля с учета. МРЭО при оформлении снятия с учета, проверяет машину на отсутствие каких-либо неправомерных действий владельца авто.

3. Общий осмотр автомобиля.

При покупке любого имущества, движимого или недвижимого, вы должны провести тщательный осмотр того, что вы приобретаете. Начните осмотр авто с кузова. Осмотрите качество покраски, наличие зашпаклеванных поврежденных участков, состояние резиновых уплотнителей, зазоры в дверях, багажника и капота. После этого осмотрите днище автомобиля для выявления швов сварки. Наиболее оптимальным вариантом является полный осмотр автомобиля на станции техобслуживания.

4. Проверка двигателя. Двигатели вы должны проверить с целью обнаружения потеков масла. Для этого вы включаете двигатель и прикасаетесь пальцами к внутренней стороне выхлопной трубы. Если нагар на трубе приобретает черный цвет с маслянистым отложением, это свидетельствует о том, что поршневая достаточно выработанная. Серый нагар на трубе говорит о том, что все детали в норме.

Далее при включенном моторе открываете крышку для заливания масла. Наличие газов говорит о том, что поршневую необходимо менять. После этого выключайте мотор и сразу же включайте зажигание. Индикатор давления масла не должен мгновенно загораться, это является результатом износа двигателя. Еще одна возможность проверки двигателя. Необходимо включить двигатель и нажать на газ, после чего резко отпустить педаль. В нормальном состоянии работа двигателя должна быть ритмичной.

Если вы заметили выход дыма из выхлопной трубы, это значит, что топливная система неисправна, или имеет место попадания масла в камеру сгорания. Ремень ГРМ вы должны сразу же заменить при покупке подержанного автомобиля.

Передачи на скорости должны включаться ровно и четко. Чтобы это проверить, выжмите педаль тормоза до упора и оставьте на несколько секунд. Если педаль не возвращается в исходное положение, значит система в норме. Если же педаль продолжаем опускаться, это говорит о том, что тормозная система автомобиля не в порядке, что может привести к аварийной ситуации.

Вот, пожалуй, и все. Этих рекомендаций достаточно для того, чтобы определить, какой же автомобиль вам предлагают купить, и стоит ли его вообще брать.

Хорошей покупки и удовольствия от качественной езды!

Диагностика работы двигателя по состоянию свечей.
Диагностика работы двигателя по состоянию свечей.

Диагностика работы двигателя по состоянию свечей.
(Забираем себе на стену-Пригодится)

На фото №1 изображена свеча, вывернутая из двигателя работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

На фото №2 типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.

На третьем фото наоборот пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов. Юбка центрального электрода свечи изображенной на фото

№4 имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительно использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

Фото № 5. Свеча имеет ярко выраженные следы масла особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Свеча на фото № 6 вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешенного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото № 7 это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синие дымление, запах выхлопа похож на мотоциклетный. Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, не вспоминайте о свечах только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Но и вы в свою очередь не забывайте с каждой заменой масла или в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего, это регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7. Так же я бы рекомендовал менять свечи местами, это связано с разными температурными режимами работы цилиндров.

Расход топлива и объем двигателя
Расход топлива и объем двигателя

Расход топлива и объем двигателя

Многих автолюбителей волнует вопрос – как связаны расход топлива и объем двигателя. Казалось было логично, что если больше объем двигателя (например – 2,0 или 2,5 литра), то тем и расход больше! А вот не всегда это так, бывает что двигатель объемом в 1,5 литра «кушает» больше чем двигатель объемом в 2,0 литра. Почему так происходит?

Итак, расход топлива и объем двигателя.

В мозге рисуется логичная прямая: чем больше объем – тем больше в этот двигатель поместится топлива, а соответственно и расход будет намного выше. Но почему практика иногда показывает обратную картину? Например, двигатель современного автомобиля с объемом в 2,0 литра имеет расход (на механике около 7-8 литров, взять тот же Skyactiv от Mazda), а вот автомобиль не совсем свежего отечественного производителя с двигателем в 1,5 литра будет иметь расход в 8 – 9 литров. Так где же логика?

Все зависит от множества факторов.

1) Технологичность. Первая причина это технологичность двигателя, автомобили очень быстро эволюционируют, а особенно сильно эволюционируют двигатели, становятся более мощными и более экономичными. Но как такое возможно? Все просто появляются новые технологии, которые позволяют увеличить мощность и уменьшить расход топлива. Простые примеры это 16 клапанов вместо 8 (быстрее впрыск топлива и отвод отработанных газов), или же инжектор вместо карбюратора (инжектор практически никогда не перельет топлива и не зальет свечи в отличие от карбюратора), также появился многоточечный впрыск топлива в цилиндры и т.д. В общем сейчас существует очень много технологий которые на механическом уровне позволяют экономить двигателю топливо, без потери мощности.

2) Прошивки. Не секрет что сейчас, в «инжекторных» автомобилях можно менять программу прошивки блока ЭБУ (мозга двигателя). Автомобиль при помощи таких прошивках может быть очень экономичный! При мне прошивали 2,0 литровый FORD FOCUS, и достигали расхода в 7 литров по городу. НО при таких «экономичных» прошивках страдает мощность двигателя, то есть автомобиль получается «задушенный», с места с «пробуксоном» на нем не тронешься. Правда можно поставить и «мощную» прошивку тут все будет наоборот, расход увеличится, причем многократно, но и увеличится мощность также многократно. Тут нужно выбирать, что для вас нужно.

3) Стиль езды. Тут как говорится, можно экономить – ездить спокойно, а можно топить педаль в пол, соответственно и расход увеличится. От стиля езды расход очень сильно зависит. Например – у моего знакомого на KIA RIO в предыдущем поколении (механика), расход с двигателем 1,4 литра, летом 10 литров, но он выжимает из своего автомобиля все что можно, практически всегда крутит «двигатель»! А у меня с двигателем 1,6 литра и с автоматом расход топлива 9,0 литров на 100 километров (подробнее в статье – Chevrolet Aveo расход топлива). Хотя и двигатель мощнее и автомат.

4) Техническая исправность автомобиля. Очень обширная тема, на расход может влиять очень многое. Если у вас элементарно давно не менялись воздушный и топливный фильтры, давно не чистилась топливная рейка, то расход топлива будет увеличен. Вполне может двигатель 1,6 литра (со старыми фильтрами) расходовать больше чем 2,0 литра (но со свежими фильтрами). Так что следим за фильтрами и меняем их вовремя.

5) Тип трансмиссии. Следующим пунктом в нашей статье – расход топлива и объем двигателя, логично поговорить о типе трансмиссии. Тут думаю все понятно, механика и продвинутые автоматы (вариаторы, коробка DSG или автомат на шесть и более передач), будут расходовать меньше, чем старые автоматы на три – четыре передачи. Таким образом, если автомобиль с двигателем 1,4 литра укомплектован автоматом на 4 передачи, то он будет расходовать больше, чем автомобиль с двигателем 2,0 литра, но с вариатором или автоматом на 6-ть передач.

6) Турбина или не турбина. Если взять два двигателя: – например обычный 1,4 литра и турбированный 1,6 литра. ТО второй 1,6 литра, не только будет намного экономичнее (экономия иногда достигает 20 %), но и намного мощнее и производительнее.

7) Ошибочная экономия. Давайте реально подумаем – почему иногда двигатель 1,4 литра намного прожорливее, чем 1,6 литра или 2,0 литра? Все дело в мощности двигателя. Если взять один и тот же автомобиль, с одинаковой массой, но с разными двигателями (обычные, не турбированные), то получается. Чтобы достигнуть таких же характеристик разгона, двигателю 1,4 литра нужно работать в более высоких оборотах, а соответственно его практически всегда нужно будет раскручивать даже если нужно достигнуть 60 км/ч, иначе ваш автомобиль попросту не будет ехать. Если крутим двигатель больше, то и расход будет больше, это логично. Теперь двигатель 1,6 литра, он намного мощнее своего собрата, чтобы ему достигнуть 60 км/ч ему не нужно больших оборотов, он будет работать в среднем режиме, соответственно и расход топлива зашкаливать не будет.

НА этом все. Не нужно думать, что большие двигатели практически всегда это просто «убийцы» бензина, не всегда это так. Простой пример из своего жизненного опыта – есть два автомобиля Nissan Almera (1.6 литра, автомат) и Nissan Teana (2,5 литра, вариатор), расход у Nissan Almera практически такой же как и у Teana – 12 – 14 литров, а зимой Almera начала расходовать больше, примерно 14 литров, у Teana расход по бортовому компьютеру 13,1! Как то так! Так что нужно думать что покупаете, читайте в интернете, не всегда расход топлива и объем двигателя прямо пропорциональные зависимости.

SpaceX провела испытания нового двигателя
SpaceX провела испытания нового двигателя

SpaceX провела испытания нового двигателя

Компания SpaceX в настоящий момент занимается модифицированием своей космической капсулы Dragon и объявила об успешном окончании одного из первых испытаний нового ракетного двигателя SuperDraco. Новые двигатели призваны заменить ракетные двигатели Draco, ныне использующиеся компанией SpaceX для пространственной ориентации их космических кораблей. Помимо этого, двигатели SuperDraco будут использоваться также в качестве системы аварийного спасения при запусках кораблей Dragon, а также для посадки капсулы на Землю, а возможно, и на другие планеты.

Пожалуй, одним из самых заметных отличий новых ракетных двигателей SuperDraco от большинства других подобных систем является то, что его камера сгорания создана на основе 3D-печати, при использовании метода прямого лазерного спекания металла, где сложные металлические структуры создаются при использовании специальной лазерной установки, которая в буквальном смысле «выпекает» слой за слоем из металлической пыли готовую деталь. Сама же камера сгорания с регенеративным охлаждением производится из инконеля, жаростойкого хромоникелевого сплава, характеризующегося высокой прочностью. Такой сплав также используется, например, при постройке двигателей Merlin, используемых в ракетах Falcon 9.

«3D-печать позволяет создавать надежные и высококлассные детали и при этом снижать их стоимость, по сравнению с традиционными методами их производства», — говорит Элон Маск, главный конструктор и исполнительный директор компании SpaceX.
«SpaceX старается расширить границы возможностей аддитивных технологий и продемонстрировать все, на что эти технологии способны в 21 веке. И одним из примеров невероятной эффективности этих технологий являются наши автомобили».
В качестве топлива такие двигатели используют смесь из некриогенных жидкостей: монометил-гидразин в качестве самого топлива и азотный тетроксид в качестве окислителя. Похожий состав используется и в двигателях Draco. Смесь самовоспламеняемая. То есть при контакте составных компонентов друг с другом они воспламеняются. Благодаря этому, у ракетных двигателей SuperDraco имеется возможность повторных перезапусков. При этом новые двигатели построены с расчетом быстрого зажигания. От запуска до полной подачи топлива требуется всего 100 миллисекунд. Но самым важным отличием ракетных двигателей SuperDraco является то, что они 200 раз мощнее двигателей Draco, развивающих тягу в 16 400 lb.

Основной задачей ракетных двигателей SuperDraco является обеспечение пространственной ориентации капсулы Dragon на орбите, а также во время ее обратного вхождения в атмосферу. Кроме того, они используются для системы аварийного покидания на старте. В отличие от предыдущих пилотируемых космических капсул, использовавшихся в США в 1960-х и 1970-х годах прошлого века, следующая версия капсулы Dragon не будет использовать специальную страховочную систему, которая позволила бы в любой момент убрать капсулу прочь при неудачном старте. Сама капсула Dragon, используя все восемь двигателей, способна за пять секунд в буквальном смысле отлететь от взлетной зоны, развив при этом тягу в 120 000 lb. Помимо этого, наличие восьми двигателей повышает уровень эффективности всей системы в случае, когда один или несколько двигателей могут выйти из строя.

Но самой амбициозной идеей за созданием нового ракетного двигателя SuperDraco является то, что, капсула Dragon разработана с возможностью мягкой посадки своими собственными силами. SpaceX даже рассматривает возможность использования ракетных двигателей SuperDraco в качестве посадочных двигателей для будущего беспилотного корабля Red Dragon, задачей которого будет посадка на Марс.

Со слов SpaceX, тестовые запуски нового двигателя успешно завершились еще в прошлом месяце на площадке Rocket Development Facility в Техасе. В рамках тестов команда инженеров проводила продолжительные запуски, множественные перезапуски двигателей и следила за состоянием их работы в этих сложнейших условиях. Первые официальные полетные испытания двигателей SuperDraco также пройдут в этом году в рамках программы NASA Commercial Crew Integrated Capabilities.

Как реанимировать упавший в воду мобильный.
Как реанимировать упавший в воду мобильный.

Как реанимировать упавший в воду мобильный.

Это может случиться с каждым. Со некоторыми это случается не по одному разу. Вы идёте в туалет и роняете в раковину или унитаз свой новенький (или не новенький, но всё равно жалко) девайс. Или что-нибудь на него проливаете – не суть важно. Главное – мы знаем как вернуть ваше устройство к жизни. Вот что надо делать:

Шаг 1: Выключить
Как только вы извлекли устройство из воды, надо первым делом его отключить. Поломка в таких случаях связана не с действием самой воды, а с коротким замыканием, которое может вызвать. Ни в коем случае не трясите его! От этого вода может проникнуть ещё глубже. Если из вашего устройства можно извлечь батарею – сделайте это как можно быстрее. Если нельзя – отключите питание немедленно. Если ваш телефон был выключен, когда вы его уронили – не вздумайте включать, чтобы проверить. Вам придётся обходится без него как минимум пару дней.

Шаг 2: Разобрать
Если в вашем устройстве есть части, которые можно снять – снимите. Задняя крышка, сим-карта, карта памяти, заглушка входа для наушников. Всё что сможете. Не переусердствуйте, конечно, а то и сломать можно, но помните, что вашему мокрому другу требуется как можно больше отверстий для доступа воздуха.

Шаг 3: Пропылесосить
Если у вас есть пылесос с насадкой, у которой узкий наконечник, он вам пригодится. Попытайтесь удалить как можно больше влаги. Лучше всего пропылесосить каждое отверстие в течение, по меньшей мере, пяти минут. В крайнем случае, можно воспользоваться и феном – но струя воздуха должна быть обязательно холодной. Горячая может расплавить детали. Но пылесос всё же лучше.

Шаг 4: Дать высохнуть
На этом этапе можно положить пострадавшего в ёмкость с рисом – он хорошо абсорбирует влагу. И самое главное – наберитесь терпения и оставьте его в покое минимум на 48 часов. Если после этого вы заметите на нём какие-либо следы влаги (запотевший экран, например) подождите ещё день-другой. Если с виду всё в порядке – можно включать.

Если вы всё сделали правильно, вероятность того, что ваш телефон будет работать, как ни в чём не бывало – довольно высока.

Диагностика работы двигателя по состоянию свечей
Диагностика работы двигателя по состоянию свечей

Диагностика работы двигателя по состоянию свечей

Фото №1
Свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2
Типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.

Фото №3
Пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

Фото №4
Имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

Фото №5
Свеча имеет ярко выраженные следы масла особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого - неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева - характерный бело-синий выхлоп.

Фото №6
Вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедших в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото №7
Это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.

Фото №8
Последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синие дымление, запах выхлопа похож на мотоциклетный. Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, не вспоминайте о свечах только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Но и вы в свою очередь не забывайте с каждой заменой масла или в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего, это регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7.

Назначение систем регулирования фаз
Назначение систем регулирования фаз (9 фото)

Назначение систем регулирования фаз

Эффективность работы ДВС главным образом определяется организацией процесса газообмена, то есть качественным и своевременным наполнением и очисткой цилиндров. Эта задача возлагается на газораспределительный механизм и зависит от фаз газораспределения – моментов и продолжительности открытого состояния впускных и выпускных клапанов. Если клапаны открыты непродолжительное время, фазы называют «узкими». Чем дольше открыты клапаны – тем фазы «шире».

При низких оборотах коленвала объемы и скорость движения горючей смеси и отработанных газов невелики, поэтому фазы должны быть узкими, а перекрытие (время одновременного открытия впускных и выпускных клапанов – минимальным. В этом случае свежая смесь не вытесняется в выпускной коллектор через открытый выпускной клапан и, соответственно, отработанные газы не попадают во впускной. Если же «расширить» фазы на низких оборотах, отработанные газы смешаются с рабочей смесью, снизив тем самым ее качество и вызвав падение мощности и неустойчивую работу двигателя.

С ростом оборотов пропорционально увеличиваются объемы и скорость движения перекачиваемой смеси и отработанных газов в единицу времени, поэтому необходимы «широкие» фазы и большее время перекрытия для лучшей продувки цилиндров. Продувка – вытеснение выхлопных газов из цилиндра движущейся с большой скоростью топливовоздушной смесью.

Ширина фаз определяется формой кулачков распределительного вала. Чем больше высота кулачка – тем выше высота подъема клапана. Чем «тупее» его конец – тем больше время максимального подъема клапана. Таким образом, подбирая форму кулачков, конструкторы могут настроить двигатель на работу только в определенном диапазоне оборотов. При проектировании обычного дорожного автомобиля разрабатывается усредненный распредвал для компромиссного баланса между мощностью и экономичностью. При отклонении от этого диапазона, как в сторону уменьшения, так и в сторону увеличения, эффективность ДВС будет снижаться. Например, «узкофазный» мотор не позволит развить высокую мощность, а «широкофазный» будет неустойчиво работать на малых оборотах, что вынудит увеличивать частоту оборотов холостого хода. Следовательно, идеальным решением было бы изменять ширину фаз в зависимости от оборотов двигателя. Так появились системы регулирования фаз газораспределения.

Для технической реализации идеи регулирования фаз было создано множество конструкций. Для их описания потребуется не одна страница. Поэтому ознакомимся с устройством только нескольких - как простых, проверенных временем систем, так и самых современных.

Поворот распредвала

Одним из способов регулирования фаз газораспределения является изменение положения распределительного вала относительно его первоначального положения в зависимости от режимов работы двигателя. Для примера рассмотрим систему Variable Valve Timing (VVT), применяемую на автомобилях Фольксваген. Она предназначается для оптимизации фаз при работе двигателя на режимах холостого хода, максимальной мощности и максимального крутящего момента.

В систему VVT входят следующие компоненты:

• Две гидроуправляемые муфты (другое название - фазовращатели), установленные на впускном и выпускном распределительных валах. Обе муфты подключены через корпус механизма газораспределения к системе смазки двигателя. Муфты состоят из встроенного в звездочку вала наружного корпуса и неподвижно соединенного с валом ротора.Корпус и ротор могут смещаться относительно друг друга
• Корпус механизма газораспределения, установленный на головке блока цилиндров двигателя. Внутри корпуса проходят каналы для подвода и отвода масла к обеим муфтам поворота распределительных валов.
• Два электрогидравлических распределителя. Эти распределители установлены на корпусе механизма газораспределения. Они служат для регулирования подвода масла из системы смазки двигателя к обоим фазовращателям.

Управление системой VVT осуществляется блоком управления двигателя. Получая данные с датчиков о частоте вращения коленвала, нагрузке двигателя, температуре охлаждающей жидкости, а также о мгновенном положении коленчатого и распределительных валов, ЭБУ выдает сигнал на электрогидравлические распределители. Распределители открывают соответствующие каналы подвода масла, расположенные в корпусе механизма газораспределения. Масло из системы смазки двигателя поступает в гидроуправляемые муфты, которые поворачивают распределительные валы.

На режиме холостого хода впускной вал поворачивается таким образом, чтобы обеспечить более позднее открытие и соответственно более позднее закрытие впускных клапанов, а выпускной вал поворачивается так, что выпускной клапан закрывается задолго до прихода поршня в ВМТ. В результате количество отработанных газов в смеси снижается до минимума, что благоприятствует стабилизации сгорания в цилиндрах двигателя и повышению равномерности его работы на данном режиме.

Для достижения максимальной мощности при высокой частоте вращения вала двигателя производится задержка открытия выпускных клапанов. Благодаря этому увеличивается продолжительность давления газов на поршень на такте рабочего хода. Впускной клапан открывается после ВМТ и закрывается относительно поздно после НМТ. При этом динамические процессы во впускной системе используются для получения эффекта дозарядки цилиндров и соответствующего увеличения мощности двигателя.

Для получения максимального крутящего момента необходимо обеспечить возможно больший коэффициент наполнения цилиндров. Для этого необходимо раньше открывать и соответственно закрывать впускные клапаны, чтобы не допустить обратный выброс смеси из цилиндров во впускной трубопровод. При этом выпускные клапаны закрываются с небольшим опережением до ВМТ.

Подобные системы устанавливают в своих двигателях Renault (VCP), BMW (VANOS/Double VANOS), Toyota (VVT-i), Honda (VTC). Некоторые из них используют фазовращатели только на впускном распредвалу, некоторые, как и VVT – на обоих. Недостатком подобных систем является то, что они способны только сдвигать фазы в ту или другую сторону, но не могут «сужать» или «расширять» их.

Переключение фаз

Такими возможностями обладает, например, Variable Valve Timing and Lift Electronic Control (VTEC), созданная инженерами Honda. Она способна расширять фазы на высоких оборотах путем изменения высоты подъема клапана. Со времени своего создания система претерпела несколько модернизаций. Здесь рассмотрим ее третью версию – систему DOHC i-VTEC. Она представляет собой симбиоз системы VTEC с системой VTC (Variable Timing Control). Именно наличие VTC добавило в обозначение системы букву «i».

Основой VTEC любого поколения является использование трех кулачков на каждую пару клапанов. Коромысел, соответственно, тоже три. Два крайних коромысла расположены непосредственно над клапанами, третье – между ними. Два крайних кулачка низкопрофильные и предназначены для обеспечения оптимальной работы на низких и средних оборотах. Усилие от среднего высокопрофильного кулачка передается на клапана только на высоких оборотах.

Как это происходит? Примерно до 5500 об/мин газораспределение обеспечивается крайними кулачками через свои коромысла. Среднее коромысло хоть и приводится в действие кулачком, но на клапана никакого воздействия не оказывает – система VTEC отключена. При дальнейшем увеличении частоты вращения включается система VTEC. Блок управления отдает команду и управляемый давлением масла штифт, сдвигаясь, замыкает между собой все три коромысла. Таким образом, они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров. Система VTEC устанавливается и на впускной, и на выпускной распредвалы.

Для тех, кто не изучал английский
At low engine speeds - При низких оборотах двигателя
At higher engine speeds - При высок

10 лучших двигателей.
10 лучших двигателей. (10 фото)

10 лучших двигателей.

1. 2JZ-GTE Устанавливается в Toyota Supra. Краткие Ттх: 3,0-литровая турбированная рядная шестерка. Предназначен для заднего привода. Выдерживает мощность до 700 л.с. без внутренних изменений. Обладает огромным потенциалом.

2. RB26DETT Устанавливается в Nissan Skyline GT-R. Краткие Ттх: 2,6-литровая битурбированная рядная шестерка. Предназначен для полного или заднего привода

3. 13B-REW Устанавливается в Mazda RX-7. Краткие Ттх: 1,3-литровый битурбированный. Предназначен для заднего привода. Роторно-поршневой двигатель. С одного литра рабочего объема этого мотора сдувают более 190 л.с..

4. 4G63 Устанавливается в Mitsubishi Evolution. Краткие Ттх: 2,0-литровый турбированный рядный четырехцилиндровый. Предназначен для переднего и полного привода. Отличный мотор, проверенный в жестких условиях ралли.

5. EJ20 Устанавливается в Subaru WRX. Краткие Ттх: 2,0-литровый турбированный оппозитный четырехцилиндровый. Предназначен для полного привода. Легендарный раллийный мотор.

6. B18/B16 Устанавливается в Honda Integra, Civic Si. Краткие Ттх: 1,8- или 1,6-литровый четырехцилиндровый рядный атмосферный. Предназначен для переднего привода. Быстрый и легкий недорогой мотор.

7. 3S-GTE Устанавливается в Toyota Celica 4WD, MR-2. Краткие Ттх: 2,0-литровый турбированный рядный четырехцилиндровый. Предназначен для переднего и полного привода. Компактный турбо мотор с раллийными корнями. Несмотря на небольшой объем поднять его мощность до 500 л.с. вполне реально.

8. SR20DET Устанавливается в Nissan 180Sx, Pulsar GTi-R, Silvia. Краткие Ттх: 2,0-литровый турбированный рядный четырехцилиндровый. Предназначен для полного и заднего привода.

9. D16 Устанавливается в Honda Civic, CRX. Краткие Ттх: 1,6-литровый четырехцилиндровый рядный атмосферный. Предназначен для переднего привода. В газораспределительном механизме мотора предусмотрен только один распределительный вал.

10. K20 Устанавливается в Acura RSX, Honda Civic Si. Краткие Ттх: 2,0-литровый четырехцилиндровый рядный атмосферный. Предназначен для переднего привода.

Заправляем самостоятельно автокондиционер
Заправляем самостоятельно автокондиционер

Заправляем самостоятельно автокондиционер

Заправляем самостоятельно автокондиционер. После того, как в ваш авто кондиционер благополучно установлен, остается только правильно его заправить. Эта, казалось бы, простая процедура имеет несколько нюансов. Если выполнить заправку неверно, то автокондиционеры могут преждевременно износиться или же, в худшем случае, сломаться мгновенно. Чтобы избежать этого, мы кратко опишем данный процесс, а так же необходимое оборудование и технологию заправки в авто, кондиционеры для которых вы решили установить.

В случае, если автомобильный кондиционер по какой бы то ни было причине разгерметизировался, то в нем вместо фреона находятся пары воды и воздух. Особенно опасно для исправности кондиционера нахождение в нем воды. В том случае, если на протяжении зимы вы ездили на машине без радиатора кондиционера, в его системе могло образоваться значительное количество воды. Иногда в шлангах кондиционера накапливается до половины стакана жидкости! С учетом того, что в кондиционере возникает минусовая температура, не сложно догадаться, что жидкость превращается в лед и перекрывает собой регулирующий орган ТРВ. Кроме того, от воды и содержащихся в ней реагентов, система быстро портится коррозией.

Наличие воздуха в автокондиционере также крайне нежелательно. Опасность связана с тем, что воздух на 70 процентов состоит из азота, который обладает отличными от фреона физическими свойствами. Из-за этого значительно увеличивается нагрузка на компрессор.

Для удаления из кондиционера воздуха и воды, к системе перед ее заправкой подсоединяется вакуумный насос. Забавно наблюдать, как мощные шланги, которые недавно невозможно было сжать в руке, быстро начинают сплющиваться. В некоторых случаях, к примеру, во время дозаправки кондиционера, проводить вакуумирование системы не обязательно. Если кондиционер вскрывался ненадолго, то газовая фракция фреона не успела покинуть систему и замениться воздухом.

Следующее действие – закачка в автомобильные кондиционеры необходимого количества газа. Отмеряется нужное количество фреона путем применения электронных весов, взвешивающих содержащий газ баллон, или при помощи мерной колбы. Мы считаем, что колбу применять удобнее. Жидкий фреон поступает в колбу из баллона. За количеством газа следят по градуированной в граммах мерной шкале. После того, как фреон отмерен, открывают краны, для доставки газа в систему кондиционера. На колбе имеется нагревательный элемент, который позволяет повысить давление газа для того, чтобы он весь попал внутрь кондиционера.

Есть и другой способ, который используют, заправляя автокондиционеры – заправка при помощи порта обратной магистрали. Компрессор кондиционера при этом должен быть включен. Он будет самостоятельно закачивать фреон внутрь. Иногда присутствует смотровой глазок, который позволяет следить за процессом. Так же вместе с газом в кондиционер можно заправить ультрафиолетовый краситель или масло при помощи инжектора.

Если кондиционер будет заправлен не до конца, то возникнет масляное голодание компрессора. К тому же, плохо заправленная система вырабатывает недостаточное количество холода. Если кондиционер заправлен слишком сильно, то в нем образуется повышенное давление, что так же приводит к его плохой работе и даже поломке системы.

Иногда неполадки проявляются только после того, как автокондиционеры полностью заправлены. Чаще всего это происходит при длительной езде с пустым кондиционером. В этом случае в кондиционере накапливается вода, вызывая появление ржавчины. Ржавчина вызывает понижение компрессии. Иногда это можно исправить с помощью доливки масла и работе компрессора на повышенных оборотах. Однако, этот способ срабатывает не во всех случаях.

Кратная звезда
Кратная звезда

Кратная звезда

Кратная звезда состоит из трёх или более звёзд, которые выглядят с Земли близкими друг к другу. Эта близость может быть просто видимостью (звезды, расположенные на разных расстояниях, находятся близко по лучу зрения) — в этом случае звезда называется оптически кратной, или является следствием того, что звёзды находятся физически близко и связаны друг с другом гравитацией — в этом случае звезда называется физически кратной. Физически кратные звёзды — это разновидность кратной звёздной системы.

Если звёзды — компоненты физически кратной системы могут быть разрешены (то есть их можно увидеть по отдельности в телескоп), такая система называется визуально кратной. Если же кратность звезды может быть определена только с помощью спектральных (доплеровских) или фотометрических (по изменению блеска) наблюдений, она называется спектрально кратной или затменной кратной системой.

Существуют системы с большими кратностями (например, система Кастора состоит из 6 компонентов). При этом в звёздную систему максимально может входить не более 10 звёзд. При их большем числе считается, что это звёздное скопление — более крупная единица в астрономии.

Компоновка поршневых двигателей
Компоновка поршневых двигателей

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Кулачковая коробка передач
Кулачковая коробка передач

Кулачковая коробка передач

Если в парной гонке на ускорение друг против друга выйдут обычный автомобиль и гоночный с двигателями одинаковой мощности, победителем, несомненно, станет последний. Ключ к победе – кулачковая коробка передач. Главное достоинство кулачковой коробки – в скорости переключения передач. Если разгоняться на обычном автомобиле, переключая передачи вверх максимально быстро, почти ударом, то смена каждой передачи займет около 0,6 с. Примерно столько уходит на высокоскоростное выключение/включение сцепления. Пилот гоночного автомобиля может сменить передачу втрое быстрее – и сделает это, не выжимая сцепления, и на каждом переключении будет выигрывать более 0,4 с! Это произойдет за счет того, что при каждом переключении у обычного автомобиля падают обороты двигателя и, соответственно, снижается интенсивность разгона. Чтобы выяснить, как устроена высокоскоростная гоночная коробка передач, мы отправились в Удельное, на подмосковную базу команды «Красные крылья», выступающей в ралли и кольцевых гонках.

Особенности гоночной механики

Денис Комаров, технический директор гоночной команды, готовит кулачковую коробку передач к фотосъемке. Он бережно протирает ветошью одну из шестеренок агрегата – огромное прямозубое колесо. Если бы такая шестерня лежала в мастерской сама по себе, можно было бы подумать, что она из коробки большого старого грузовика. Между тем она принадлежит компактному хетчбэку Citroёn С2.

Большой диаметр колеса объясняется двумя факторами. Во-первых, коробка раллийной машины передает от двигателя на колеса солидный крутящий момент. А во-вторых, колесо прямозубое. Достоинство привычных косозубых шестерен, которые применяются в коробках «гражданских» автомобилей, заключается в том, что за счет более длинного зуба и, соответственно, большей поверхности распределения нагрузок они могут передавать тот же крутящий момент при меньших размерах. Кроме того, они работают заметно тише. Но прямозубые колеса применяются в гоночных машинах не случайно: они не создают осевых нагрузок на валах и повышают КПД коробки.
Удивительно, но гоночная коробка передач не сложнее, а даже проще обычной гражданской. Здесь нет никаких синхронизаторов, а вместо большого количества мелких зубцов, которые входят в зацепление при включении передачи на обычной коробке, применяются крупные кулачки – торцевые выступы на шестерне и муфте (обычно их 5–7 штук на колесо). Чтобы передачи включались как можно скорее, кулачки входят в зацепление с большим зазором по ширине. Поэтому при включении передач на раллийной машине можно слышать характерное металлическое клацанье – это кулачки шестерни и муфты столкнулись друг с другом.

Кулачковая коробка требует от пилота большой ловкости – особенно при переключении вниз: для синхронизации оборотов двигателя и трансмиссии необходимо филигранно работать педалью акселератора и прекрасно чувствовать автомобиль. При бережной езде пилот при переходе вниз пользуется сцеплением, в ходе гонки – особенно на машинах с секвентальной кулачковой коробкой – педаль сцепления ему практически не нужна. В том числе поэтому раллисты иначе, чем гражданские водители, выжимают педали. Правая нога у них обычно лежит на педали газа, а левая заведует сцеплением и тормозами. Четко работать акселератором очень важно, ведь без правильно выполненной перегазовки переход на понижающую передачу либо вообще не произойдет, либо будет сопровождаться жестким ударом. Именно поэтому пилоты раллийных машин ехидно улыбаются, когда я интересуюсь, насколько популярна кулачковая коробка среди любителей тюнинга. Конечно, находятся фанаты уличных гонок, которые заменяют серийные коробки кулачковыми. Такая замена улучшает динамику разгона, но требует от водителя постоянной концентрации внимания при переключении вниз, а также наполняет салон шумом от работы прямозубых шестерен. Кулачковая коробка воет примерно так же громко, как гражданская косозубая, когда в ее картере нет масла. Добавим сюда высокую стоимость кулачковых коробок (до $20 000 за агрегат) и невысокий срок службы – и придем к выводу, что установка кулачковой коробки на обычный автомобиль совершенно не оправданна. Конечно, срок службы автомобиля зависит и от субъективных факторов. В жестких гоночных условиях синхронизаторы долго не живут. Так что если за рулем гражданского автомобиля окажется маньяк, кулачковая коробка, вполне возможно, будет служить ему дольше привычной. Тем не менее со временем гоночный агрегат начнет издавать характерный стук, говорящий о том, что скруглившиеся кулачки не обеспечивают надежного зацепления. Такая коробка нуждается в замене износившихся пар. Денис рассказывает, что кулачковую коробку для проверки разбирают после каждой гонки, а некоторые пары в коробке приходится менять через каждые 2–3 этапа гонок. И это нормально!

Вперед-назад: хорошо и плохо

Есть и еще одна причина, почему кулачковые коробки не подходят для обычных дорог. Хотя эти агрегаты нередко оборудуют обычным поисковым механизмом переключения, самые быстрые и популярные у гонщиков коробки – секвентальные. В раллийных машинах пилота сильно трясет, поэтому водить рычаг переключения вперед-назад куда удобнее, чем выбирать передачи, как в обычном автомобиле. К тому же такая кинематика рычага позволяет сэкономить несколько миллисекунд на каждом переключении.

Но ездить с секвентальной коробкой кулачкового типа по дорогам общего пользования – страшная мука. Дело в том, что когда мы попадаем в пробку или под прямым углом поворачиваем с главной дороги на второстепенную, то обычно перескакиваем сразу на несколько передач вниз. Например, с пятой на вторую. При секвентальной же коробке такой трюк не выйдет: придется с перегазовкой последовательно перейти на четвертую, третью и лишь затем – на вторую передачу. Денис показывает, почему так происходит на коробке «ситроена». Когда пилот раллийной машины толкает рычаг этой секвентальной коробки вперед или назад, на определенный угол поворачивается специальная ось с многочисленными кулачками. При этом один из кулачков возвращает вилку переключения передач в нейтральное положение, а другой давит на еще одну вилку, и она вводит в зацепление муфту с шестерней нужной передачи. Чтобы включить, скажем, пятую передачу, надо последовательно несколько раз повернуть ось, которая управляется вилками переключения.

Утешение гражданского гонщика

Выходит, что кулачковая коробка абсолютно неприменима для гражданских автомобилей. Это не совсем так. Британские фирмы – главные производители кулачковых коробок – традиционно имеют много запросов среди любителей тюнинга, желающих приобрести их коробки, а в нашей стране на базе кулачковой коробки даже был разработан современный агрегат для «гражданского» использования, который почти лишен недостатков.

Произошло это так. Компания «Спортмобиль», которая занималась тюнингом и подготовкой для соревнований и без того быстрых автомобилей Mitsubishi Lancer Evolution, освоила установку на этих машинах кулачковой коробки фирмы Gemini. Эффективное использование такого устройства предполагает превосходные навыки водителя. Но поскольку применение кулачковой коробки кардинально изменяет динамические характеристики, инженеры и основатели компании Алексей Чернышев и Павел Рустанович решили адаптировать гоночную коробку для использования обычными водителями при каждодневной езде.

Для решения этой задачи привлекли электронику. За основу взяли компьютер Motec, позволяющий программировать функции автомобиля. К нему написали собственное программное обеспечение, которое в совокупности с разработанным электронным блоком и стало основой его системы, получившей название SGSM (Sequental Gearshift Management). Сотрудники компании «Спортмобиль» смогли связать переключения передач в коробке с работой систем зажигания и впрыска. При переходе вниз мотор в автоматическом режиме совершал перегазовку. С одной стороны, это облегчало жизнь пилоту, а с другой – повышало срок службы кулачко

Езда "накатом" - пережиток прошлого или возможность сэкон...
Езда "накатом" - пережиток прошлого или возможность сэкон...

Езда "накатом" - пережиток прошлого или возможность сэкономить бензин?

Глушить или не глушить? Катиться или ехать? Эти уже совсем не шекспировские вопросы мучают не одну светлую водительскую голову. Хотя, более актуальным этот материал будет для водителей, имеющих автомобили с механической коробкой передач. Поскольку на «автомате» ехать накатом не получится.

Еще со времен детства мне запомнилось выражение «езда накатом». А вот в чем его смысл стало понятно позже, «когда ноги стали доставать до педалей».

Итак, давайте проясним: "езда накатом" – это движение автомобиля на нейтральной скорости.
Зачем это нужно? Тут вариантов несколько. Но, один из наиболее распространенных – это экономия бензина. Мол, если машина катится сама по себе – обороты будут небольшими, и автомобиль не будет потреблять дополнительное топливо. Вроде все понятно.

А теперь давайте разберемся…

С учетом того, что карбюраторных автомобилей становится все меньше и меньше (автопром на месте не стоит), то вряд ли езда накатом поможет вам экономить бензин. В советские и перестроечные времена ездить «накатом» водителей заставляла несовершенная конструкция двигателей старых машин. Сегодня автомобили становятся все более технологически совершенными. Так, даже инжекторные машины при движении на передаче по инерции, бензин потребляют в минимальных количествах – для поддержания холостых оборотов двигателя. Поэтому, куда более эффективно просто отпустить педаль газа, не выключая передачу, в этом случае подача топлива полностью прекращается, и автомобиль двигается по инерции.

Не всегда поможет сэкономить и заглушенный двигатель. Так если вы стоите в пробке меньше 5 минут – глушить двигатель бесполезно, потому как слишком частые запуски мотора приведут только к перерасходу, так как в момент старта потребуется не меньше топлива, чем для 2-3 минутного простоя, к тому же увеличится нагрузка на аккумулятор.

Кроме того, такой стиль езды «накатом» весьма небезопасен. Ведь по-сути, вы можете попасть в неуправляемый занос. А вот интенсивное экстренное торможение будет намного эффективнее если вы тормозите на передаче - меньше тормозной путь.

Вдогонку на историю от 18 декабря «Отомстил» есть тоже почти похожий сюжет и у меня.
Не заводишься – будешь без глаз
Брат давно рассказывал, тогда он работал в совхозе водителем грузовика, и ему часто приходилось ездить на комбикормовый завод, получать комбикорм, и привозить его в совхоз. Это была ездка на один рейс, и чтобы пораньше освободиться от работы, водители спозаранок, ещё до открытия, подъезжали к заводу и занимали очередь за получением комбикорма. Вот в такую очередь встал и мой брат, впереди уже стояло несколько машин, и один автомобиль ГАЗ-52 с молодым парнишкой. В 8 часов ворота открываются, включаются стартёры, заводятся моторы, все стремятся попасть первыми. А у парнишки мотор не заводится, он и так и сяк, а ни звука.
Выскочил он уже с так называемым «кривым стартером» - заводной рукояткой, и стал вручную прокручивать мотор. Ну не заводится мотор и всё тут, его уже начали объезжать другие более фартовые автомобили, потерял он свою очередь. И тут слышится – хрясть- хрясть, это он в сердцах начинает рукояткой бить по фарам машины. Побил стёкла в фарах и говорит – «Будешь знать, как не заводиться, вот ходи теперь безглазая!» Что и говорить – смех его коллег был гомерическим.

Прочитать...
Американцы затеяли «свечную» революцию
Американцы затеяли «свечную» революцию (2 фото)

Американцы затеяли «свечную» революцию
___________________________________

В компании Federal-Mogul официально представили новую систему зажигания, которая вполне может вытеснить нынешние свечи.

О новинке было известно еще в сентябре прошлого года, но официальная информация появилась только сейчас. По-английски устройство называется Advanced Corona Ignition System (ACIS), что переводится как «Продвинутая система коронарного зажигания». Наиболее важным в этой технологии является сокращение расхода топлива не менее чем на на 10%.

В случае с использованием обычных свечей зажигания воспламенение смеси происходит точечно — горение распространяется от искры, газы расширяются, ускоряя движение поршня вниз. Главное отличие работы ACIS в том, что вместо точечной искры происходит большее по площади воспламенение в виде короны. Это ионизирует и возбуждает топливную смесь в камере сгорания, вследствие чего процесс идет и быстрее, и эффективнее.

«Мы зарегистрировали уменьшение потребления топлива до 10% для 1,6-литрового бензинового двигателя с прямым впрыском и турбонаддувом, и у нас есть потенциал для дальнейшей модификации и улучшения», - рассказал Кристофер Микселл, директор проекта внедрения системы зажигания Corona (подразделение Powertrain Energy компании Federal-Mogul).

Как утверждают в Federal-Mogul, их разработка не только поможет повысить топливную экономичность за счет лучшего сгорания смеси, но и даст конструкторам двигателей возможность сделать их еще более совершенными. Сейчас же двусоставный воспламенитель позволяет производителям двигателей заменить традиционные системы с катушкой и свечой зажигания без вмешательства в конструкцию мотора.

Некоторое время назад японцы в содружестве с румынскими коллегами разработали лазерные свечи зажигания. В основе их изобретения – многоточечный поджиг топливной смеси по всему объему цилиндра.
Объявляла о намерениях внедрить в свой новый роторный двигатель оригинальную систему зажигания и компания Mazda. Для воспламенения топливно-воздушной смеси вместо обычной искры в ней также будут использоваться лазерные лучи.

Если двигатель перегрелся
Если двигатель перегрелся

Если двигатель перегрелся

Весна всегда приносит автовладельцам проблемы. Они возникают не только у тех, кто всю зиму держал машину в гараже или на стоянке, после чего долго бездействовавший автомобиль преподносит сюрпризы в виде отказов систем и агрегатов.

Но и у тех, кто ездит круглый год. Некоторые дефекты, «дремавшие» до поры до времени, дают о себе знать, как только столбик термометра устойчиво перевалит в область положительных температур. И один из таких опасных сюрпризов - перегрев двигателя.

Перегрев в принципе возможен в любое время года - и зимой, и летом. Но, как показывает практика, на весну приходится наибольшее число подобных случаев. Объясняется это просто. Зимой все системы автомобиля, в том числе и система охлаждения двигателя, работают в весьма тяжелых условиях. Большие перепады температур - от «минусовых» по ночам до весьма высоких рабочих после непродолжительного движения - негативно действуют на многие агрегаты и системы. «Масла в огонь» добавляют соляные растворы, которыми обильно политы дороги - соль агрессивно действует на электрические разъемы, резиновые шланги, радиаторы и многие другие детали.

Зимой не самые благоприятные условия для ремонтных работ, и многие автовладельцы, не имея теплого гаража, стараются протянуть до весны, чтобы не дрожать с гаечными ключами на морозе. В результате автомобиль, лишенный обслуживания в течение зимы (особенно если он не новый), отказывает в самый неподходящий момент.

Вот как обычно это происходит. Зимой, естественно, у вас не было проблем с системой охлаждения: отвод тепла от радиатора при низких температурах сам по себе достаточен, да и включенный отопитель снимает с двигателя заметную часть калорий. В результате электровентилятор, которым оснащается большинство современных автомобилей, в холодное время включался очень редко. Но как только наступила оттепель, вдруг обнаружилось, что он не работает. И узнали вы об этом, конечно, тогда, когда двигатель уже перегрелся, а охлаждающая жидкость закипела.

Как обнаружить перегрев?

Ответ, вроде бы, очевиден - посмотреть на указатель температуры охлаждающей жидкости. На самом деле все куда сложнее. Когда движение на дороге интенсивное, водитель не сразу замечает, что стрелка указателя сдвинулась далеко в сторону красной зоны шкалы. Однако есть ряд косвенных признаков, зная которые можно уловить момент перегрева и не глядя на приборы.

Так, если перегрев возникает из-за малого количества антифриза в системе охлаждения, то первым на это отреагирует отопитель, расположенный в высокой точке системы, - горячий антифриз перестанет туда поступать. То же произойдет и при кипении антифриза, т.к. оно начинается в самом горячем месте - в головке блока цилиндров у стенок камеры сгорания, - а образовавшиеся паровые пробки запирают проход охлаждающей жидкости к отопителю. В результате подача горячего воздуха в салон прекращается.

О том, что температура в системе достигла критического значения, точнейшим образом свидетельствует внезапно появившаяся детонация. Поскольку температура стенок камеры сгорания при перегреве значительно выше нормы, это непременно провоцирует возникновение ненормального горения. В результате перегретый двигатель при нажатии на педаль газа напомнит о неисправности характерным звонким стуком.

К сожалению, и эти признаки нередко могут остаться незамеченными: при повышенной температуре воздуха отопитель выключают, а детонацию при хорошей шумоизоляции салона можно просто не услышать. Тогда при дальнейшем движении автомобиля с перегретым двигателем начнет падать мощность, и появится стук, более сильный и равномерный, чем при детонации. Тепловое расширение поршней в цилиндре приведет к увеличению их давления на стенки и значительному росту сил трения. Если же и этот признак не будет замечен водителем, то при дальнейшей работе двигатель получит основательные повреждения, и без серьезного ремонта уже, к сожалению, не обойтись.

Отчего возникает перегрев

Внимательно присмотритесь к схеме системы охлаждения. Практически каждый ее элемент в определенных обстоятельствах может стать отправной точкой перегрева. А его первопричины в большинстве случаев такие: плохое охлаждение антифриза в радиаторе; нарушение уплотнения камеры сгорания; недостаточное количество охлаждающей жидкости, а также негерметичность в системе и, как следствие - уменьшение избыточного давления в ней.

Первая группа, помимо очевидного наружного загрязнения радиатора пылью, тополиным пухом, листвой, включает еще неисправности термостата, датчика, электродвигателя или муфты включения вентилятора. Встречается и внутреннее загрязнение радиатора, однако не из-за накипи, как бывало много лет назад после длительной эксплуатации двигателя на воде. Тот же эффект, а иной раз намного более сильный, дает применение различных герметиков для радиатора. И если последний действительно забит таким средством, то прочистить его тонкие трубки - довольно серьезная проблема. Обычно неисправности этой группы легко обнаруживаются, а чтобы доехать до стоянки или СТО, достаточно бывает пополнить уровень жидкости в системе и включить отопитель.

Нарушение уплотнения камеры сгорания - тоже довольно распространенная причина перегрева. Продукты сгорания топлива, находясь под большим давлением в цилиндре, через неплотности проникают в рубашку охлаждения и вытесняют от стенок камеры сгорания охлаждающую жидкость. Образуется горячая газовая «подушка», дополнительно нагревающая стенку. Подобная картина возникает из-за прогара прокладки головки, трещин в головке и гильзе цилиндра, деформации привалочной плоскости головки или блока, - чаще всего вследствие предшествовавшего перегрева. Определить, что подобная негерметичность имеет место, можно по запаху выхлопных газов в расширительном бачке, вытеканию антифриза из бачка при работе, быстрому повышению давления в системе охлаждения сразу после запуска, а также по характерной водомасляной эмульсии в картере. Но установить конкретно, с чем связана негерметичность, удается, как правило, только после частичной разборки двигателя.

Явная негерметичность в системе охлаждения возникает чаще всего из-за трещин в шлангах, ослабления затяжки хомутов, износа уплотнения насоса, неисправности крана отопителя, радиатора и других причин. Отметим, что течь радиатора часто появляется после «разъедания» трубок так называемым «Тосолом» неизвестного происхождения, а течь уплотнения насоса - после длительной эксплуатации на воде. Установить, что охлаждающей жидкости в системе мало, визуально так же просто, как и определить место утечки.

Негерметичность системы охлаждения в ее верхней части, в том числе из-за неисправности клапана пробки радиатора, приводит к падению давления в системе до атмосферного. Как известно, чем меньше давление, - тем ниже температура кипения жидкости. Если рабочая температура в системе близка к 100°С, то жидкость может закипеть. Нередко кипение в негерметичной системе возникает даже не при работе двигателя, а после его выключения. Определить, что система действительно негерметична, можно по отсутствию давления в верхнем шланге радиатора на прогретом двигателе.
Если двигатель все-таки перегрелся

Почему у одного водителя автомобиль все время ломается, а у другого точно такой же - нет? Может быть, первому с автомобилем не повезло? Чаще всего дело в другом. Просто второй водитель более грамотен и знает, что происходит внутри его автомобиля, а первый - даже не догадывается.

То же самое и в случае с перегревом мотора. Почему? Да потому что зная процессы, происходящие в двигателе, совсем нетрудно понять, что можно и нужно делать при перегреве, а чего - нельзя категорически.

Напомним, как следует поступать, если перегрев все-таки произошел.

Очевидно, надо сразу остановиться на обочине дороги или у тротуара, выключить двигатель и открыть капот - так двигатель будет охлаждаться быстрее. Кстати, на этой стадии в подобных ситуациях так пост

Компоновка поршневых двигателей
Компоновка поршневых двигателей

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

Рассмотрим плюсы и минусы установки газового оборудования на автомо...
Рассмотрим плюсы и минусы установки газового оборудования на автомо...

Рассмотрим плюсы и минусы установки газового оборудования на автомобиль

Рассмотрим плюсы и минусы установки газового оборудования на автомобиль.Постоянно растущие цены на бензин вынуждают многих автолюбителей задуматься о переводе машины на более дешевый газ, но споры по поводу того, насколько это целесообразно не утихают.

Плюсы установки газа на автомобиль:

1. Самое главное достоинство газового топлива – это его низкая цена по сравнению с бензином, а значит, быстрая окупаемость стоимости установленного баллонного оборудования.

2. Высокое октановое число газа (около 105) позволяет избежать детонации при работе двигателя, что снижает нагрузку на другие узлы и механизмы.

3. Остается возможность использования и бензина, и газа, при этом простое переключение осуществляется прямо из салона. Таким образом, топливная аппаратура фактически дублируется, уменьшая риск полной остановки автомобиля в дороге.

4. Благодаря более полному сгоранию газовоздушной смеси на 30-40% практически не образуется нагар на свечах, клапанах и поршнях, продлевается срок эксплуатации двигателя, а это прямая экономия на ремонтных работах.

5. Газовоздушная субстанция не смывает со стенок и деталей двигателя масло и не растворяет его, благодаря чему на 10-15% снижается расход масла.

6. Максимальный пробег на одной полной заправке газом, примерно, вдвое больше, чем на бензине (при условии, что емкость газового баллона не меньше емкости бензинового бака, а так оно, обычно, и бывает).

7. При условии качественной регулировки двигатель работает мягче, без рывков, что значительно удлиняет срок эксплуатации трансмиссии и шин.

8. Газовое топливо намного безвреднее для окружающей среды.

9. Установка газобаллонного оборудования позволяет повысить шансы на защиту автомобиля от угона. Отсоединив коммутатор, можно заблокировать подачу топлива (как газа, так и бензина), правда, только на инжекторных авто.

10. И, наконец, минимальная амортизация самого оборудования – срок эксплуатации резинотехнических деталей составляет более пяти лет.

Минусы газобаллонного оборудования:

1. Самый существенный недостаток установки газового баллона – значительное уменьшение свободного пространства в багажнике. И если в седане можно поместить баллон у стенки багажника (возле заднего сиденья), то универсал или хэтчбек теряет всякие преимущества большого багажника. Можно установить баллон и на место запаски, но тогда придется ездить либо без нее, либо размещать ее в другом месте.

2. Увеличение металлоемкости авто на 30-40 кг.

3. Особенности пуска холодного двигателя на газу – рекомендуется заводить автомобиль на бензине, и только после прогрева переключаться на газ.

4. Увеличение скорости разгона и уменьшение максимальной скорости автомобиля, примерно, на 3-8%.

5. Существенная потеря мощности двигателя. Ее величина зависит от октанового числа бензина, который потребляет мотор. Так, если автомобиль работал на 95-м бензине, при хорошей регулировке газового оборудования теряется около 2-5% мощности, а если на 80-м – то уже до 10-15%.

6. Смещается центр тяжести, что влияет на управляемость автомобиля (особенно на скользкой дороге).

7. Расход газа на 15-30% выше по сравнению с бензином.

8. Появляется необходимость не только проходить плановое техническое обслуживание, но и дважды в год производить проверку и опрессовку газобаллонного оборудования, а так же обслуживать еще одну топливную систему.

9. Газовых автозаправок гораздо меньше, чем бензиновых.

Вот основные достоинства и недостатки установки газового оборудования на бензиновый автомобиль. В остальном все зависит от технических характеристик авто, качества самого оборудования, правильности его регулировок, а также условий эксплуатации.

Как реанимировать упавший в воду мобильный. Это может случиться с к...
Как реанимировать упавший в воду мобильный. Это может случиться с к...

Как реанимировать упавший в воду мобильный. Это может случиться с каждым. С некоторыми это случается не по одному разу. Вы идёте в туалет и роняете в раковину или унитаз свой новенький (или не новенький, но всё равно жалко) девайс. Или что-нибудь на него проливаете – не суть важно. Главное – мы знаем как вернуть ваше устройство к жизни. Вот что надо делать:

Шаг 1: Выключить
Как только вы извлекли устройство из воды, надо первым делом его отключить. Поломка в таких случаях связана не с действием самой воды, а с коротким замыканием, которое может вызвать. Ни в коем случае не трясите его! От этого вода может проникнуть ещё глубже. Если из вашего устройства можно извлечь батарею – сделайте это как можно быстрее. Если нельзя – отключите питание немедленно. Если ваш телефон был выключен, когда вы его уронили – не вздумайте включать, чтобы проверить. Вам придётся обходится без него как минимум пару дней.

Шаг 2: Разобрать
Если в вашем устройстве есть части, которые можно снять – снимите. Задняя крышка, сим-карта, карта памяти, заглушка входа для наушников. Всё что сможете. Не переусердствуйте, конечно, а то и сломать можно, но помните, что вашему мокрому другу требуется как можно больше отверстий для доступа воздуха.

Шаг 3: Пропылесосить
Если у вас есть пылесос с насадкой, у которой узкий наконечник, он вам пригодится. Попытайтесь удалить как можно больше влаги. Лучше всего пропылесосить каждое отверстие в течение, по меньшей мере, пяти минут. В крайнем случае, можно воспользоваться и феном – но струя воздуха должна быть обязательно холодной. Горячая может расплавить детали. Но пылесос всё же лучше.

Шаг 4: Дать высохнуть
На этом этапе можно положить пострадавшего в ёмкость с рисом – он хорошо абсорбирует влагу. И самое главное – наберитесь терпения и оставьте его в покое минимум на 48 часов. Если после этого вы заметите на нём какие-либо следы влаги (запотевший экран, например) подождите ещё день-другой. Если с виду всё в порядке – можно включать.
Если вы всё сделали правильно, вероятность того, что ваш телефон будет работать, как ни в чём не бывало – довольно высока.

Нигерия - страна, где каждый зарабатывает как может, так как населения 150 млн человек. Соответственно, способы довольно дикие, плюс местный африканский менталитет. Часто экипажи судов, работающие или заходящие на погрузку в дельту реки Нигер, встречают радушный прием местными аборигенами на предмет натурального обмена. В основном, вне конкуренции обмен на местные фрукты что-либо из горюче-смазочных материалов. То есть происходит примерно так - пароход стоит на якоре в ожидании то ли выгрузки, то ли погрузки. Подплывает местный сказочно черный колхозник и на неплохом английском предлагает супер папаю, арбузы в зависимости от сезона, тут же делает скидки и тд. Встречает понимание от часто голодных моряков и обмен пошел. Однажды дитя Африки попросил груза - то бишь прямоперегонного бензина. На вопрос куда, где канистры - Негоро махнув рукой сказал: "Та давай сюда прямо в лодку - канистры забыл".
Народ тоже долго не думал и ливанул запрашиваемые 200 литров прямо в лодку из шланга. На том и попрощались, пожелав успешно догрести до берега. Однако парень спешился и грести в лом вероятно было. Решил завести мотор, отплыв метров 100. Дергание веревки мотора было последним движением в его жизни. Как вы понимаете, пары бензина чуть-чуть взорвались после попадания в двигатель лодки и искры. Кроме копоти не осталось ничего.

Прочитать...

Компьютерная классика нашего века – это игра. Безусловно, многие скажут, что компьютеры были созданы для того, чтобы сделать жизнь человека проще, удобнее и даже, если хотите мобильнее. На самом же деле все обстоит несколько иначе. Компьютерные игры – вот двигатель компьютерной мощности в настоящее время.

Прочитать...

Лифты у нас в доме меняют. Новые, хотя и очень крутые - пищат при
приземлении, кнопки с подсветкой, больше трех в грузовом не собирают, -
все равно ходят еле-еле, часто чего-то ждут, особенно, если один человек
сел, а уж тарахтят страшно. И в чем дело, непонятно, вроде должны быть
как в гостинице приличной. И неважно, что армяне делали, которые
по-русски читать и писать только с помощью шестилетнего мальчика
обучились - ну пока лифты собирали и разбирали, уж три месяца как. И не
суть, что отечественной сборки и просроченные, все равно вид у них вроде
как приятный. Должна быть другая причина, более глобальная и
всеобъемлющая и все объясняющая, кстати, тоже.
Вчера возвращался вечером с работы. Мальчонка, тот, что армян русскому
учил, с ними возился, ну он вообще пацан без комплексов, лифты сразу
освоил, пока родители на работе, а посторожить его некому, с консьержем
подружился, армян обучал, словом, проводил дни как белка в колесе,
успевал просто за всем и всюду. И всегда приветливый такой, со всеми
перезнакомился, каждого жильца по имени привечает. Так и сегодня.
Со мной поздоровался и снова к своим дружкам великовозрастным играться.
Те как раз собирали мотор новому лифту. И тут нахаленок высказался так,
что у меня прямо глаза открылись.
- Левон, - говорит он своему приятелю, ковыряющему мотор отверткой,
пассатижами и молотком попеременно. - Ты погоди, ты все винтики не
закручивай, мне оставь, а то мне потом играть не во что будет.
И Левон щедро отсыпал, не заставил ждать друга.

Прочитать...

Общая особенность всего оборудования орков - тенденция часто ломаться. Сооружения Меков довольно ветхие, особенно, если они используют захваченные запасные части или разукомплектованные детали с вражеских транспортных средств (которые, как правило, пригоняются друг к другу кувалдой и сваркой). Если Мек хочет поставить деталь на место, он сделает это при помощи рашпиля и кувалды. Если он не справится сам, он позовет на помощь других Меков. Меки просто используют свои испытанные, но грубые методы, чтобы заставить оборудование работать. След, усыпанный сломанным оборудованием или изношенными частями, является уверенным признаком того, что здесь прошли орки

Если убрать из этого фрагмента упоминания об орках, то можно подумать, что здесь описываются особенности производства и эксплуатации отечественных автомобилей

Прочитать...

Если бы Операционные Системы были Инструкторами по Вождению

Инструктор DOS

Преподает преимущественно на "классике" ("шестерка" - самое то).
Вежлив, терпелив, но сам никогда ничего не обьясняет. Вам придется
ткнуть пальцем в каждый прибор или эллемент управления и вы получите
короткий но четкий ответ. К сожалению знает он далеко не все, и если вы
приволочете скажем магнитолу, то мало того что в машину встанет только
самая примитивная - так еще и объяснять придется долго и упорно а что
это и с чем едят. К счастью, к магнитолам как правило прилагается
инструкция - вот и дайте ему. Пусть читает. В случае возникновения ДТП,
инструктор просто берет киянку выходит из машины, вправляет вмятины и
предлагает ехать дальше. Раздалбывается эта машина только в самых
крайних случаях - "классика". Замечу - у этого инструктора явно
действует правило - больше одного человека за раз, в машину не сажать.

Инструктор Windows 95

Это предыдущий инструктор, слегка подучившйся и перебравшийся на дико
тюнингованную "девятку". Тюнинг даже не позволяет сразу определить марку
автомобиля, впрочем, при малейшем повреждении - лоск отваливается и
становится виден родной автопром. Сам иснтруктор, набравшись ума и
эрудиции обожает по делу и без дела вам рассказывать какие классные у
него в машиню рюшечки, как здорово что теперь сюда подходит любая
магнитола... (особенно он это задвигает на первом, ознакомительном
занятии) Знайте - подло врет!. Магнитол в машину теперь ставится гораздо
больше, да и антирадары и прочие примочки теперь тоже могут быть
использованы... Но при всем при этом, некоторые вместо работы - могут
привести к выходу из строя всей машины. Так же инструктор приобрел
отвратную привычку каждый раз когда вы что-то хотите сделать спрашивать
вас по десять раз: "А вы уверенны?", "А вы подумали?"
При столкновении с машин всякий раз осыпается что-то из обвеса и прочего
тюнинга, и довольно скоро она полностью выходит из строя... За время
обучения вам придется не раз покупать ему новую машину.. К счастью она
не дорогая.
У него первого из его единоутробных братьев появляется милая привычка
часто перехватывать управление не давая ученику и шагу ступить
самостоятельно

Инструктор Windows 2000

Этот ездиет на "Вольво". Машина неказистая, но надежная, в столкновениях
как правило сильно не страдает, что позволяет обойтись позимствованныой
у предыдущего брата киянкой. Прежде чем вас запустить внутрь машины -
придирчиво проверяет ваши документы... в особо критических случаях -
звонит на работу/домой/в ФСБ и просит подтвердить вашу личность. В
случае малейшего несовпадения - захлопывает дверь. После нескольких
попыток - просто запирается и укладывается спать.
Во время первого занятия не разговорчив, но заботлив. Подгоняет сиденье
под вас, протирает стекла. Знает все и хорошо. Поэтому по первому
запросу дает развернутые комментарии по делу, с указанием телефолна
автошколы по любым вопросам вне его компетенции... Для каждого ученика у
него есть свое сиденье, свой освежитель воздуха, и свой стиль речи.
Правда у некоторых освежитель такой сильный что после заниматься
совершенно невозможно. Одет всегда стро и солидно - корпоратиынй стиль.
Имеет обыкновение перехватывать управление при мысли о том что ученик
сейчас может сделать что-то не то, да и в спокойное время, чуть поиграв
педалями - вы почуствуете что он чутко отслеживает все ваши действия....
Раздражает...

Инструктор XP

Преподает на шикарном бронированном "мерсе". Все объяснения сопровождает
кучей рисунков и графиков, у него всегда стоит самая современная
магнитола, доставляется самолетом из Германии в день выхода. Во время
обучения играет музыка, работает шикарный плазменный телевизор. К
счастью можно попросить его все это безобразие отрубить - но это если
знать как. При столкновении - как правило остается жив. Этому
способствует и развитая система самовосстановления. К сожалению, в
случае ДЕЙСТВИТЕЛЬНО серьезного сбоя - все обходится покупкой нового ТС
и найма нового препода.

Инструктор "*Nix"

Машина чаще всего Т-72 или Т-80, что объясняется военными корнями
инструктора. Зачем это надо ученику - не объясняется. Ослу понятно что
90% мира ездиет на совершенно другом транспорте. Зато - столкновения
могут закончится только царапиной, моментально закрашиваемой ручками.
Вообще руками работать приходится очень много. Вплоть до того, что часто
приходится самостоятельно перебирать мотор танка. Например чтобы
поставить новую магнитолу.
Обьяснять самостоятельно что-то не в правилах этого инструктора. Он
скорее полностью самоустранится от вашего обучения и предоставит вам
ковырятся со всем самостоятельно. С другой стороны существует множество
его учеников которые с удовольствием дадут вам все необходимые
объяснения. При этом, вы всегда можете разбудить инструктора из задать
вопрос о функциональности почти любой фитюльки. Единственная проблема -
ответ то он даст, но как правило он будет выглядеть как: "Однажды, в
1967 году, два молодых раздолбая...". И вам придется внимательно
выслушивать его словесный понос, чтобы узнать что-же такое он хотел
сказать о фитюльке. Самое обидное что при всем при этом конкретики в
этом море теории почти не будет, и даже не надейтесь на учебный пример.
В отличии от инструктора DOS - *nix этим не страдает. Танк сильно поеден
ржавчиной, заляпан краской и вообще выглядит крайне непривлекательно. С
некоторыми усилиями, на него можно взгромоздить муляж кузова автомобиля.
Лучшие образцы, (чаще всего из арктического корпуса - по крайней мере на
их гусеницах явно отпечатаны раздавленные пингвины) будут даже где-то
похожи на помесь "Хаммера" с "Белазом". Правда управлятся и выглядеть
изнутри они всеравно будут как танк. Для каждого ученика у этого
инструктора танк совершенно свой.
Армейская специфика (видимо) наложила свой отпечаток и на язык
инструктора. Вам придется выучить море всевозможных "нах", "мля", "мать"
и прочих малопонятных словечек, в отличии от предыдущих инструкторов,
пользующихся нормальным человеческим языком.
Если вам в конце концов удастся прорватся сквозь все его премудрости -
вы станете дипломированным инженером-ремнтником и может даже
конструктором танков, кое-кто будет способен самостоятельно
модернизировать двигатель переделав его почти полностью... Вот только
ценность этого для вождения обычного автомобиля - представляется
сомнительной....

Написанно самолично, к распространению разрешено с указанием копирайта.

Дополнения - приветствуются.

Источник:

http://www.livejournal.com/users/eugene_df/

Прочитать...

Сказка про «Запорожца» и «Мерседеса»
Хвастался когда-то «Запорожец» «Мерседесу»:
- У меня мотор объемом 1197 куб. см, мощностью 42 лошадиных силы, с
максимальной скоростью 120 км/ч.
На это «Мерседес» отвечал:
- А у меня объем двигателя 5789 куб. см, мощность 367 лошадиных сил, 12
цилиндров, максимальная скорость 250 км/ч, так что засунь свой мотор
знаешь куда..?
И «Запорожец» засунул…
С тех пор у «Запорожца» мотор сзади.

Прочитать...

Два пенсионера наблюдают в автомастерской замену мотора. Один говорит:
- Было бы хорошо, если бы у людей можно было заменять мотор!
- А я бы остался доволен заменой поршня.

Прочитать...
Мы Вконтакте vk.com/bibofun
Лучшее за неделю

Лучшие авторы


Все материалы, которые размещены на сайте, представлены только для ознакомления и являются собственностью их правообладателя. Администрация не несет ответственности за информацию, размещенную посетителями сайта. Сообщения, оставленные на сайте, являются исключительно личным мнением их авторов, и могут не совпадать с мнением администрации. письма слать на: sitemagnat@gmail.com